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Predictive Models

Problem: Learn to predict outputs y from inputs  using some
function f.

Method: Estimate function f from a labeled training set

D = {(xn,yn) :n=1: N}, forx, € ¥ CRP and y, € Y C RC.
Uncertainty: We may model our uncertainty about the correct
output given input using a conditional probability model p(y|f(x)).
Cases: Parametric vs Nonparametric, Deterministic vs Bayesian
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Predictive parametric models i

In supervised parametric learning we use a labeled dataset
D = {(xn,yn) :n=1: N} and a probabilistic model p(y|x, ).

Deterministic: Prediction is done by calculating p(y|x, 8*), where
0" = argmingeg ~ Y1 £n(6) + AC(0), where £,(8) is a loss
function which measures goodness of fit, e.g. log-loss

0,(0) = —logp(y|xz,0); C(0) is a regularization factor and X € R.

If we use the log-loss, and define C'(0) = — log m(8), where 7((8)
is some prior distribution, and we use A\ = 1, we recover the
Maximum a Posteriori (MAP) estimate.
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Predictive parametric models ii

Bayesian: Instead of predicting using just one value of 8, compute
the posterior predictive distribution using Bayesian model
averaging p(y|z, D) = [ p(y|z,0)p(6|D)d6. We average over
different possible models (possible values of 6), weighted
depending on parameter posterior probability p(6|D), where
p(0|D) x p(0)p(D|O), that is, the posterior is proportional to the

likelihood times the prior.

Daniel Corrales (ICMAT) PML session 6. Bayesian NN Probabilistic ML Reading Group



Motivations of using Bayesian predictive models

p(ylz, D) = /p(y|:c,9)p(0|D)d6.

p(0)p(D|0)
[ p(@)p(D|6)do

p(0|D) =
Pros:

= We define a distribution over parameters, which lets us
represent uncertainty more accurately.

= Considering different models together can lead to improved
accuracy

Cons:

= Integration has no closed form in general
= Problem is usually intractable
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Ingredients for doing Bayesian inference

1. Prior p(0): Reflects our beliefs about parameters before
seeing the data.

2. Likelihood p(D|@): Represents how well the data supports a
specific hypothesis.

3. Posterior inference p(0|D): What we believe after seen the
data

4. Evidence / marginal likelihood p(D): Total probability of
the data under all possible hypothesis

5. Predictive p(y|x, D): Marginalize parameters to predict
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Some examples of Bayesian predictive parametric models i

Linear regression with known o: y = 8Tz + ¢, e ~ N(0,0?)

N
Likelihood : p(y| X, 0) = [ N (yn|60" @, 0?)

n=1
Prior : p(8) = N(8]0, 5?)
Posterior : p(8] X ,y,0%) = N (8|, X))

1 41 -1
p= ﬁszy, 3= (0—0 L U2XTX)

Predictive : p(y*|z*, D) = N (y*\uTw*, os + (:B*)TE:B*)
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Some examples of Bayesian predictive parametric models ii
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Figure 1: Source
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Deep Neural Networks + Bayesian Model Averaging

What if we need more complex modelling?

Idea: Leverage deep neural networks (DNNs) for modeling the
conditional distribution.

p(ylz,0) = fnn(0; )

But DNNs are large flexible models which can represent many
functions, corresponding to different parameter settings
(underspecification, [D'A+22]), which fit the training data well,
yet generalize in different ways. We can benefit from Bayesian
model averaging for improved accuracy and uncertainty
quantification.

p(ylz. D) = [ plyle,0)p(6]D)d6
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Classical vs Bayesian approach to DL

Standard Neural Network Bayesian Neural Network
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Figure 2: . Standard NN vs Bayesian NN
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Deep Neural Networks + Bayesian Model Averaging

BNNs inherit the ingredients for Bayesian inference:

= Prior parameter distribution p(8)

= Likelihood distribution p(y|x, @)

= Posterior distribution p(8|D)

= Predictive posterior distribution p(y|x, D)

Our model becomes more general, but that comes at a cost. We
lose convexity, as NNs have nonlinear transformations, and there is
a dimensionality explosion, which increases expressivity but

compromises inference.

p(ylz, D) = /p(y|$,0)p(9|D)d0.

p(0)p(D|0)
[ p(@)p(D|6)do
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Predictive posterior

Nearly all approaches in Bayesian deep learning for estimating the
integral

plylz. D) = [ plyle, 6)p(6|D)do 1)

when it cannot be computed in closed form, involve a simple
Monte Carlo approximation

JJ

pyle,D)~ Y pylw.6;)  6;~p6ID)  (2)
j=1

This involves samples from the posterior, which in practice will also
be approximate as the true posterior will be too complicated to

sample from.
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Priors

1. Gaussian priors

Consider an MLP with L-1 hidden layers

and a linear output

f(@;x) =Wg (..0(Wiz + b)) + br.
The most common choice is to use a

factored Gaussian prior:

Wy ~ N(0,021), b ~ N (0, B2

Some examples for «; and 5; include

Xavier initialization and LeCun

initialization.
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Priors

2. Priors in function space
Establishing priors over parameters leads to different possible
functions (e.g., case of Gaussian priors). However, the
function characteristics preferred by the prior are not
straightforward to understand.
Some approaches attempt to design informative priors that
lead to desired invariances, locality, independencies or

symmetries.

Prior & Prior B . Prior C . Prior D

Figure 3: Obtained from [GCO25]
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Priors iii

3. Architectural priors
Neural network architecture can also have a large effect on the
induced distribution over functions (inductive bias):
= Convolutional NNs encode prior knowledge about translation
equivariance due to their use of convolutions. E.g. a car at the
top of an image is the same as a car at the bottom”.
= Recurrent NNs share weights accross time, leading to
time-translation equivariance, and have a sequentiality bias
(time order).
= With a suitable architecture, we may get good results using

random (untrained) models.
This field that studies this is called Neural Architecture
Search [EMH19]
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Posteriors: Laplace approximation i

Laplace approximations [Mac92; Dax+21]: Compute a Gaussian
approximation of the posterior centered at the MAP estimate,

017 4p. Note we can write the posterior as
1
p(8|D) = Ze_U(B), with U(0) = —log p(8, D)
Perform a 2nd-order Taylor expansion around the mode 6:
A AT 1 AT A
U@)~U()+ (6 —0) g+§(9—0) H(6—0)
where g is the gradient, H is the Hessian. This results in
1 o A
5(0,D) = e U® exp {—2(9 _ 0T H(O - 0)}

pO|D) =N(616,H™ ")
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Posteriors: Laplace approximation i

Properties:

= Simple approximation, leverages
60y 4p, obtained through
optimization

= Bayesian estimate for any

pretrained model. Curvature 4
information is only used after the €.
model has been estimated, not

==« Laplace approximation
—— True posterior

during the optimization process.

= Computing the Hessian can be
expensive, fast second-order
optimisation methods exist

= Highly local and unimodal.
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Posteriors: Variational Inference i

Variational Inference [HVC93; Blu+15]: For posterior
approximation of p(@|D), choose the distribution ¢, (8) that
minimizes Dgr,(qy(0)||p(6]|D)) with respect to .

We often choose a Gaussian approximate posterior
qy(0) = N (0|, X), which lets us use the reparametrization trick
to create a low variance estimator of the gradient of the ELBO.

p(©]X)

~
e Q)
Space of all distributions \“\ Target distribution

Hidden true posterior P(6|D)

Best variational solution
/ I Divergence

KL[q(0)[|p(6]D)]

- Optimal proxy g(6)

—_

Space of q :

) ® Gradient ascent
q(©[®Y)
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Posteriors: Variational Inference ii

However, these approximations often underestimate the
uncertainty. Using normalizing flows (Ch. 23) or implicit
distributions partly mitigate this underestimations.

Properties:

= Simple method, optimization-based.
= Curvature is used at every step of gradient descent.

= |ocal and unimodal when Gaussian is used.

Hidden true posterior P(6|D)

Divergence
KL[q(6)][p(6]D)]

Space of q b
' «—— Optimal proxy q(6)

_—
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Posteriors: MCMC methods i

MCMC methods [Nea96]: Hamiltonian Monte Carlo is
considered the gold standard, as it does not make strong

assumptions about the form of the posterior.

However, its use is limited because it requires access to the full
training set at each step. Stochastic gradient MCMC methods
offer a more scalable alternative as they operate using mini-batches
of data (e.g. SGLD).
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Posteriors: SGD trajectory-based methods i

SGD trajectory-based methods: In stochastic weight
averaging (SWA)[lzm+18], they noted that SGD solutions, for a
fixed learning rate, surround the periphery of points of good
generalization. They propose to compute the average the SGD

samples, collected after a certain interval, to get 6 = %Zle 0,

Test error (%) Train loss Test error (%)

’ ' 2 ‘ : ‘ ‘ b Wsep, |
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Posteriors: SGD trajectory-based methods ii

In [Mad+19], they fit a Gaussian distribution over the set of SGD
samples (SWA-Gaussian). Further, Multi-SWAG can detect
several different modes and approximates the posterior through a
mixture of Gaussians.

Properties:

= No additional training overhead compared to standard training
= Better generalization, improves accuracy and calibration.

= Heuristic. Not properly Bayesian.
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Posteriors: Deep Ensembles i

Deep Ensembles [LPB17]: Train multiple models with different
initializations, then approximate the posterior using an equally
weighted mixture of delta functions

1 Y .
p(OID) ~ 7 > 60— 6m),

m=1

where M is the number of models, and ém is the MAP estimate

for model m.

It has been argued that deep ensembles can approximate the BNN
posterior predictive [WI20].
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Posteriors: Deep Ensembles ii
Properties:

= Highly multi-modal. Parameters in different modes give rise to
very different functions.

= Random priors can be combined with bootstrap data
sampling.

= Local method (just uses modes)

= High training cost (M times standard training)

= Not a competing approach for doing Bayesian inference, but a
compelling mechanism for Bayesian marginalization.
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Comparison of BNN Inference Methods

Method Training Inference Scalability Posterior Generalization & Quality
MCMC (HMC) Very High High Poor True Gold Standard
(Theory Only) (Multimodal) (Perfect calibration)
Variational Inf. Medium Low High Unimodal Low / Medium
(Bayes by Backprop) (Gaussian) (Often overconfident)
Laplace Approx. Low Low High Unimodal Medium
(Post-hoc) (Gaussian)  (Good in-dist, poor OOD)
SGD Trajectory Low Low High Approx. Good

(SWAG) Multimodal (Captures flat basins)
Deep Ensembles High Medium High Multimodal Excellent (SOTA)

(Practical Winner)

(Non-param)

(Best OOD robustness)
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Comparison of BNN inference methods

Deep Ensembles SWAG (Diagonal)
5 Time: 1.61s 5 Time: 0.35s
.+ Data
2 - True Func 2
1] — predmean N
Uncertainty (2std) }
[ 0
-1 -1
-2 -2
-3 -3
-4 -2 0 2 4 -4 -2 4 2 4
Laplace (Diagonal) VI (Mean Field)
3 Time: 0.41s Time: 1.16s
2 2
1
0
-1
-2
-3
-4 -2 0 2 4 -a -2 4 2 4
MCMC (HMC)
5 Time: 1.06s Execution Time Comparison
150
2
125
1
4 1.00
o §
2075
&
-1 050
-2 0.25
-3 0.00
-4 -2 0 2 4 Ensembles  SWAG Laplace
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Comparison of BNN inference methods

Ensembles

Predictive Entropy Predictive Entropy Predictive Entropy predictive Entropy Predictive Entropy

Neg. Log Likelihood Exp. Calibration Error Brier Score Avg, Wasserstein Dist (vs HMC) Execution Time
{Lower-Better) ioner-getter) (ower=Better) tower=closer to HMC) (seconds]
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Online inference i

An important application of Bayesian inference is in sequential
settings, where data arrives in a continuous stream. The posterior
is updated recursively, following a simple intuition: today's
posterior becomes tomorrow's prior.

log p(0|D1.¢) ox log p(Dy|@) + log p(6|D1:4—1)

A sequential approach for many of the inference methods explained
exists, e.g., sequential Laplace or sequential VI. Ideas from Kalman
Filters are also relevant in the field.

However, in most of the cases, the effect of the prior and the
likelihood is reweighted, to control for how much the model pays
attention to new data vs old data.
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Online inference ii

Ti—1 Ty Ti41

Figure 6: Obtained from [DM+-24]
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Generalization in Bayesian DL i

Why being Bayesian can improve predictive accuracy and
generalization performance? Again, the key is marginalizing rather
than using a single setting of weights. Generalization depends on
two properties of the model

1. Support

2. Inductive bias
The difference between the classical and the Bayesian approach
will depend on how sharp the posterior is. In underspecified

models, likelihoods are diffuse and do not favour any one setting of
parameters. BMA leverages this.
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Generalization in Bayesian DL

We want the support of the
model to be large so that we
can represent any hypothesis
we believe to be possible.
We need an inductive bias
that represents the relative
prior probabilities of the
hypotheses

P(DIM)

ied Model
ictive Biases

Well-Sp
Call

Ezamp

Simple Model
Poor Inductive Biases
Ezample: Linear Function

Complex Model
Poor Inductive Biases
Exzample: MLP

Dataset

CIFAR-10 MNIST

Corrupted
CIFAR-10
Structured Tmage Datasets

Thus, the flexibility of a model should not be mistaken for the

complexity of the model class.
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Generalization in Bayesian DL iii

Most Bayesian deep learning

methods focus on faithfully p(|D)
approximating a posterior

within a single basin of

attraction (e.g. using the

Blyle)
MAP, fitting a Gaussian). LMA“
Arguably, representing disfw«@' W

multiple basins of W w

‘ODC(‘,]) Ensembles oVl 0 Multi-SWAG |

attraction in the posterior
leads to better
generalisation when
marginalizing.
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Limitations of BNN i

Tempered/cold posterior effect: BNNs give better predictive
accuracy if the likelihood, or the full posterior itself, is scaled by
some power T' < 1.

pr(w|D) = Z(lT)p@,w)va(w) (3)

Performance gains for T' < 1 point to a potentially resolvable
problem with prior, likelihood or inference procedure.

Tempering the posterior distribution helps under model
misspecification (which is always the case).
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Limitations of BNN

o4
©
=

Test accuracy
o
[{=]
N

090  —e— SG-MCMC
Baseline: SGD
0.88 ‘
107 1073 1072 1071 10°

Temperature T
Figure 1. The “cold posterior” effect: for a ResNet-20 on CIFAR-
10 we can improve the generalization performance significantly by
cooling the posterior with a temperature 17" < 1, deviating from
the Bayes posterior p(@|D) x exp(—U(0)/T) at T = 1.
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Limitations of BNN iii

The causes of the cold posterior effect are directly associated
with underrepresenting aleatoric uncertainty.

[Wen+20] points to prior misspecification being one of the causes
for the cold posterior effect.

[Kap+22] argues that cold posterior in classification is due to using
softmax likelihoods, for which there is no modelling of the inherent
randomness of the data. They propose a noise Dirichlet model to
account for that aleatoric uncertainty.

p(ylx,0) = N(y|f(x),0%) ; p(ylx,0) = Cat(y|softmax(f(x)))
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Final remarks

= Bayesian model averaging is beneficial for increased accuracy
and uncertainty quantification in NNs.

= Prior specification and inference approximations are needed.
These usually entail assumptions (local, Gaussian, ...)

= Future steps in the field are in the direction of studying model
generalization capabilities, representing aleatoric uncertainty,
and prior design.
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Missing topics in this talk

» Last-layer posterior approximations methods / Partially
stochastic networks

= Alternatives to Monte Carlo approximation to the predictive
posterior.

= Functional BNNs

= Bayesian model selection and marginal likelihood.
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Next Session

Beyond the i.i.d. assumption (Ch. 19)
February 4th

Carlos G. Meixide (ICMAT)
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