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Sequential Monte Carlo (SMC): Estimating a Sequence of Dis-
tributions

• Goal of SMC: approximate a sequence of related distributions

πt(z1:t) = 1
Zt

γ̃(z1:t)

for t = 1 : T .
• Such sequences arise in:

• State Space Models (SSMs): πt(z1:t) ∝ p(z1:t|y1:t)
• SMC Samplers: tempered or bridging distributions between

prior π0 and posterior πT .
• We focus on:

1. SMC for inference in SSMs (particle filtering)
2. SMC samplers for general Bayesian inference
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Applications of Sequential Monte Carlo

1. SMC for SSMs

• Object Tracking:
Estimating
position/velocity of aircraft
or animals using noisy
radar or GPS data.

• Stocks: Stochastic
volatility modelling for
option pricing.

2. SMC Samplers
• Epidemiology: Inferring

transmission rates for
disease outbreaks (e.g.,
COVID-19) using complex
simulators.

• Reinforcement Learning:
Policy search and planning
in sparse-reward
environments.

• Climate: Calibrating
parameters of large-scale
climate models.
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State Space Models (SSMs)

A SSM can be represented as a probabilistic model of the form:

p(zt|zt−1, ut) = p(zt|f(zt−1, ut)) (Transition model)

p(yt|zt, ut, y1:t−1) = p(yt|h(zt, ut, y1:t−1)) (Observation model)
We focus on a simplified case:

p(z1:T , y1:T ) = p(z1)
T∏

t=2

p(zt | zt−1)
T∏

t=1

p(yt | zt)
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Bayesian Filtering equations

We want to compute the belief state p(zt | y1:t) given the prior
belief from the previous step, p(zt−1|y1−t−1):

Prediction step (Chapman-Kolmogorov equation):

p(zt | y1:t−1) =
∫

p(zt | zt−1) p(zt−1 | y1:t−1) dzt−1

Update step (Bayes’ rule):

p(zt | y1:t) = p(yt | zt) p(zt | y1:t−1)
p(yt | y1:t−1)
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Linear–Gaussian State Space Models

A linear dynamical system is a special case of an SSM where both the
transition and observation models are linear with Gaussian noise:

State transition model

zt = Ftzt−1 + bt + εt, εt ∼ N (0, Qt)

Observation model

yt = Htzt + dt + ηt, ηt ∼ N (0, Rt)

Equivalently,

p(zt | zt−1) = N (Ftzt−1 + bt, Qt), p(yt | zt) = N (Htzt + dt, Rt).

Key property: If p(zt−1 | y1:t−1) is Gaussian, then p(zt | y1:t) is also
Gaussian

This closure property enables exact Bayesian filtering.
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Kalman Filter: Predict and Update

Assume the filtering distribution at time t− 1 is Gaussian:

p(zt−1 | y1:t−1) = N (µt−1|t−1, Σt−1|t−1)

Predict step (time update)

µt|t−1 = Ftµt−1|t−1 + bt

Σt|t−1 = FtΣt−1|t−1F ⊤
t + Qt

Update step (measurement update)

ŷt = Htµt|t−1 + dt

St = HtΣt|t−1H⊤
t + Rt

Kt = Σt|t−1H⊤
t S−1

t

µt|t = µt|t−1 + Kt(yt − ŷt)

Σt|t = Σt|t−1 −KtStK
⊤
t
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Linear Gaussian Case: Example
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Importance Sampling (Self-Normalized IS)

Goal: estimate expectations under a target distribution πt:

Eπt [φt(z1:t)] =
∫

φt(z1:t) πt(z1:t) dz1:t, πt(z1:t) = γ̃t(z1:t)
Zt

.

Using a proposal qt(z1:t), with supp(π) ⊆ supp(q), we can rewrite:

Eπt [φt(z1:t)] =
∫ [

γ̃(z1:t)
q(z1:t) φt(z1:t)

]
q(z1:t) dz1:t∫ [

γ̃(z1:t)
q(z1:t)

]
q(z1:t) dz1:t
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Importance Sampling (Self-Normalized IS)

Drawing z
(i)
1:t ∼ qt(z1:t), i = 1, . . . , Ns, we estimate

Eπt [φt(z1:t)] ≈
Ns∑
i=1

W
(i)
t φt(z(i)

1:t),

Where:

w̃
(i)
t = γ̃t(z(i)

1:t)
qt(z(i)

1:t)
, W

(i)
t = w̃

(i)
t∑

j w̃
(j)
t

, Ẑt = 1
Ns

Ns∑
i=1

w̃
(i)
t .
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Importance Sampling (Self-Normalized IS)

To approximate the target distribution:

πt(z1:t) ≈
Ns∑
i=1

W
(i)
t δ(z1:t − z

(i)
1:t).
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Sequential Importance Sampling (SIS)

Key idea: exploit the autoregressive (online) structure of the
problem.

Autoregressive proposal:

qt(z1:t) = qt−1(z1:t−1) qt(zt | z1:t−1)

Given particles {z(i)
1:t−1}, extend each trajectory by sampling

z
(i)
t ∼ qt(zt | z(i)

1:t−1).

Recursive weight update:

w̃t(z1:t) = γ̃t(z1:t)
qt(z1:t)

= w̃t−1(z1:t−1) · γ̃t(z1:t)
γ̃t−1(z1:t−1) qt(zt | z1:t−1)︸ ︷︷ ︸

incremental importance weight αt(z1:t)
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Sequential Importance Sampling (SIS)

Special case: State Space Models

γ̃t(z1:t) = p(z1:t, y1:t) = p(yt | z1:t) p(zt | z1:t−1) γ̃t−1(z1:t−1)

Hence,
αt(z1:t) = p(yt | z1:t) p(zt | z1:t−1)

qt(zt | z1:t−1)
.
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Sequential Importance Sampling (SIS)

Limitation: Weight degeneracy
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Sequential Importance Sampling with Resampling (SISR)

SIS proposal:

qSIS
t (z1:t) = qt−1(z1:t−1) qt(zt | z1:t−1),

SISR proposal:

qSISR
t (z1:t) = π̂t−1(z1:t−1) qt(zt | z1:t−1),

where π̂t−1(z1:t−1) =
∑

i W
(i)
t−1δ(z1:t−1 − z

(i)
1:t−1).

How resampling works (selection step):

• Resample Ns samples from z
(ai)
1:t−1 ∼ π̂t−1(z1t−1).

• Reset weights: w̃
(i)
t−1 = 1.

Propagation:

z
(i)
t ∼ qt(zt | z(ai)

1:t−1), z
(i)
1:t = (z(ai)

1:t−1, z
(i)
t ).
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Sequential Importance Sampling with Resampling (SISR)

Weight update:

w̃
(i)
t = αt(z(i)

1:t) = γ̃t(z(i)
1:t)

γ̃t−1(z(ai)
1:t−1) qt(z(i)

t | z
(ai)
1:t−1)

.

(Same incremental weights as SIS.)

Resampling methods: Inverse cdf, multinomial resampling,
stratified resampling, systematic resampling.
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Bootstrap filter

Bootstrap filter: Special case where the model is an SSM and the
proposal equal to the dynamical prior:

qt(zt|z1:t−1) = p(zt|z1:t−1)

Hence,

αt(z1:t) = p(yt | z1:t)p(zt | z1:t−1)
qt(zt | z1:t−1)

= p(yt|z1:t)
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Bootstrap filter

Limitation: Path degeneracy
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Adaptive Resampling

Key trade-off:

• No resampling ⇒ SIS:
• severe weight degeneracy
• few particles effectively contribute

• Resample at every step:
• avoids weight collapse
• increases path degeneracy (loss of diversity in ancestry)

Adaptive resampling: resample only when particle diversity
becomes too low.

Effective Sample Size (ESS):

ESS(W1:N ) = 1∑N
n=1 W 2

n

, ESS(w̃1:N ) =

(∑N
n=1 w̃n

)2

∑N
n=1 w̃2

n

.
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Algorithm: SISR with Adaptive Resampling

Algorithm 1 SISR with adaptive resampling (generic SMC)
1: Initialization: w̃1:Ns

0 = 1,
2: for t = 1 : T do
3: for i = 1 : Ns do
4: Sample particle: z

(i)
t ∼ qt(zt | z(i)

1:t−1)

5: Compute incremental weight: α
(i)
t = γ̃t(z(i)

1:t)
γ̃t−1(z(i)

1:t−1) qt(z(i)
t |z(i)

1:t−1)

6: Compute unnormalized weight: w̃
(i)
t = w̃

(i)
t−1α

(i)
t

7: end for
8: if ESS(w̃1:Ns

t−1 ) < ESSmin then
9: Compute ancestors: a1:Ns = resample(w̃1:Ns

t−1 )
10: Select particles: z

(i)
1:t ← z

(ai)
1:t

11: Reset weights: w̃
(i)
t = 1/Ns

12: end if
13: Normalize weights: W

(i)
t = w̃

(i)
t∑

j
w̃

(j)
t

14: Posterior approximation: π̂t(z1:t) =
∑Ns

i=1 W
(i)
t δ(z1:t − z

(i)
1:t)

15: end for
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Comparing SIS and SISR
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Proposal distributions

The locally optimal proposal distribution q∗(zt|z1:t−1) is the one
that minimizes:

DKL(πt−1(z1:t−1)qt(zt|z1:t−1)∥πt(z1:t)),

which is:

q∗(zt|z1:t−1) = πt(zt|z1:t−1) = γ̃(z1:t)
γ̃(z1:t−1)

.

Usually intractable. Some approximations are:

• Proposals based on extended and unscented Kalman filter.
• Laplace approximations.
• Nested SMC.
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SMC Samplers

Goal: sample from a generic target distribution

π(z) = γ̃(z)
Z

,

SMC samplers provide an alternative to MCMC, with:

• estimation of the normalizing constant Z,
• natural adaptivity,
• easy parallelization.

Key idea: define a sequence of intermediate distributions

πt(zt) = γ̃t(zt)
Zt

, t = 0, . . . , T,

interpolating between an easy distribution π0 and the target
πT = π.
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SMC samplers

Path construction via forward and backward kernels:

• Forward kernel Mt(zt | zt−1): a Markov kernel that leaves πt

invariant. Used to propagate particles forward.
• Backward kernel Lt−1(zt−1 | zt): defines a joint path

distribution

πt(z1:t) = πt(zt)
t−1∏
s=1

Ls(zs | zs+1),

satisfying ∑
z1:t−1 πt(z1:t) = πt(zt).
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SMC samplers

Incremental importance weight:

αt = πt(z1:t)
πt−1(z1:t−1) Mt(zt | zt−1)

∝ γ̃t(zt)
γ̃t−1(zt−1)

Lt−1(zt−1 | zt)
Mt(zt | zt−1)

.

Key condition (time-reversal): choose Lt−1 such that

πt(zt) Lt−1(zt−1 | zt) = πt(zt−1) Mt(zt | zt−1),

which simplifies the weight update to

αt ∝
γ̃t(zt)

γ̃t−1(zt−1)
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Likelihood Tempering (Geometric Path)

Geometric path of targets

γ̃t(z) = γ̃0(z)1−λt γ̃(z)λt , 0 = λ0 < · · · < λT = 1.

Bayesian parameter inference

γ̃0(θ) ∝ π0(θ), γ̃(θ) = π0(θ) p(D | θ),

γ̃t(θ) = π0(θ) p(D | θ)λt = π0(θ) exp[−λtE(θ)], E(θ) = − log p(D, θ)

Incremental importance weights

Let λt = λt−1 + δt. Then

αt(θ) = γ̃t(θ)
γ̃t−1(θ)

= exp[−δtE(θ)].
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Likelihood Tempering

Adaptive choice of δt

Choose δt such that

δt = argminδ∈[0, 1−λt−1]
(
ESSLW

(
{−δ E(θn

t )}
)
− ESSmin

)
typically ESSmin ≈ 0.5 N .

• Ensures successive targets are approximately equidistant
• Prevents weight degeneracy
• If there is no such δt, set δt = 1− λt−1
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Example
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Data Tempering

Intermediate target distributions

Given iid observations y1:T , define

γ̃t(θ) = p(θ) p(y1:t | θ), t = 1, . . . , T.

• Prior: γ̃0(θ) = p(θ)

• Final target: γ̃T (θ) = p(θ | y1:T )

Incremental importance weights Using the SMC sampler weight
update,

αt(θ) = γ̃t(θ)
γ̃t−1(θ)

= p(θ)p(y1:t | θ)
p(θ)p(y1:t−1 | θ)

= p(yt | y1:t−1, θ).
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Data tempering

Computational considerations

• Evaluating MCMC at every step is expensive.

IBIS (Iterated Batch Importance Sampling)

• Only apply MCMC step when ESS drops below a threshold
• Otherwise, propagate particles deterministically (θ(i) = θ(i−1))
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Example
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Likelihood-Free Inference via SMC

Sampling Rare Events:

• Goal: sample from π0(θ) conditioned on a rare event
S(θ) > λ∗, where S(θ) is a score or fitness function.

• Approach: SMC with gradually increasing thresholds:

πt(θ) = 1
Zt

I(S(θ) ≥ λt) π0(θ), λ0 < · · · < λT = λ∗.

• We may use likelihood tempering with the “likelihood” at
each step being:

Gt(θ) = I(S(θ) ≥ λt)
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Likelihood-Free inference via SMC

Likelihood-Free Inference (SMC-ABC):

• Consider models where the likelihood p(y|θ) is intractable
but we can simulate data y ∼ p(·|θ).

• Approximate Bayesian Computation (ABC) samples (θ, y)
such that simulated data is close to observed data:

d(y, y∗) < ϵ

or for summary statistics s(y): d(s(y), s(y∗)) < ϵ.
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Likelihood-Free inference via SMC

• SMC-ABC gradually decreases ϵ over iterations:

πt(θ, y) = 1
Zt

π0(θ) p(y|θ) I(d(y, y∗) < ϵt), ϵ0 > · · · > ϵT

• This is analogous to rare-event SMC, but the “likelihood” is
evaluated in data space.
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Example
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Conclusions

• We motivated Sequential Monte Carlo (SMC) as a general
framework for approximating sequences of complex
distributions. Specifically, we

• Studied SMC for State Space Models, including:
• Sequential Importance Sampling (SIS).
• Sequential Importance Sampling with Resampling (SISR).
• Adaptive resampling.

• Presented SMC samplers as a flexible alternative to MCMC:
• likelihood tempering.
• Data tempering.
• likelihood free inference.
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Upcoming sessions

• Next session:
• Special session: VI + MCMC
• January 14th, 2026
• Max Hird (PostDoc @ University of Waterloo)

• Following section:
• Bayesian Neural Networks (Ch. 17)
• January 21st, 2026
• Daniel Corrales (PhD @ Institute of Mathematical Sciences)

• After that:
• Every other week (so 4/2, 18/2, 4/3, ...)
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