
PML 3. Markov chain Monte Carlo
Probabilistic Machine Learning Reading Group

Miguel Santos
December 3, 2025

Institute of Mathematical Sciences (ICMAT-CSIC)



Contents

• Introduction

– Basis of Markov chain Monte Carlo
• Famous MCMC Algorithms

– Metropolis-Hastings (MH)
– Gibbs Sampling
– Auxiliary Variable MCMC
– Hamiltonian Monte Carlo (HMC)

• Convergence

• Extensions

• Conclusions

Miguel Santos (ICMAT) PML 3. Markov chain Monte Carlo Probabilistic ML Reading Group 2



Contents

Introduction

Basis of Markov chain Monte Carlo

Famous MCMC Algorithms

Metropolis-Hastings (MH)

Gibbs Sampling

Auxiliary Variable MCMC

Hamiltonian Monte Carlo (HMC)

Convergence

Extensions

Conclusions

Miguel Santos (ICMAT) PML 3. Markov chain Monte Carlo Probabilistic ML Reading Group 3



The Bayesian Inference Problem

• We model data D and latent variables x through a joint
p(x,D) = p(D | x)p(x).

• The goal is to infer the posterior:

p(x | D) = p(D | x)p(x)
p(D) .

• Examples:
• Regression: predict outcomes with uncertainty intervals.
• Clustering: infer mixture components and their probabilities.
• Neural networks: estimate uncertainty in model parameters.
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Why Exact Inference is Hard

• The evidence
p(x) =

∫
p(x,D) dz

is rarely tractable.
• No analytical solution for p(D | x)
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Previous chapter: VI

• Introduce tractable distribution q(z) to approximate the
true posterior.

• Turn inference into optimization: arg maxq∈Q L(q)

• L measures how similar p and q are.
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MCMC vs Variational Inference

VI
• Approximation based.
• Accuracy depends on the

selected family.
• Fast.
• Scales with SGD.

MCMC
• Sample based.
• Asymptotically exact.
• Slow for high dimension.
• Hard to scale. (Not

impossible!!!)
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Basis of MCMC

• Monte Carlo: random sampling, usually used to estimate
expectations of the form

Eπ[f(X)] ≈ 1
N

N∑
i=1

f(Xi),

where Xi ∼ π i.i.d.

Example: estimating π

Figure 1: Monte Carlo simulations for Estimating π
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Basis of MCMC

• Markov Chain:
• Sequence (X0, X1, X2, . . . ) with

P(Xt+1 ∈ A | Xt, Xt−1, . . . ) = P(Xt+1 ∈ A | Xt).

.
• Stationary distribution: the distribution of Xt does not

change over time.
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Basis of MCMC

Markov Chain Monte Carlo (MCMC):

• Objective: build a sample {x0, x1, . . . , xN} of p(x)

• Random sampling sequentially x0 → x1 → x2 → . . ..

• p(x) is an stationary distribution of the built Markov Chain.

• “The time spend in each state x∗ is proportional to the
objective distribution p(x∗)”.
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Basis of MCMC

[Code S1]
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Metropolis–Hastings

Elements

• Proposal distribution / transition kernel q:

xn → xn+1, xn+1 ∼ q(xn+1 | xn)

Example: xn+1 = xn + ε, with ε ∼ N (0, σ2Id), so that
q(xn+1 | xn) = N (xn, σ2Id).

• Acceptance probability:

A = min

1,
p(xn+1)
p(xn)︸ ︷︷ ︸

target density ratio

· q(xn | xn+1)
q(xn+1 | xn)︸ ︷︷ ︸

proposal correction


[GIF]
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Kernel examples

Examples of proposal q

• Random walk proposal: x′ = x + ε, with ε ∼ N (0, σ2Id), so
that q(x′ | x) = N (x′; x, σ2Id).

• Independent proposal (importance–sampling style):
q(x′ | x) = q(x′).

• Mixture proposal: q(x′ | x) =
∑

k wk qk(x′ | x), with wk ≥ 0
and ∑

k wk = 1.
• Data-driven proposal: q(x′ | x,D), where D denotes the data.
• Adaptive MCMC: qt(x′ | x) = N (x′; x, τ(t)Id) with

τ(t) = τ0
(
1 + 1

t+1

)
, where t is the iteration index.

Miguel Santos (ICMAT) PML 3. Markov chain Monte Carlo Probabilistic ML Reading Group 16



Proposal distributions for MH

Conditions on the proposal q

• Support containment:

supp(p) ⊆ supp
(
q(· | x)

)
∀x,

i.e. any point where p(x) > 0 must be reachable with
q(x′ | x) > 0.

• Robust behaviour: q should not be too concentrated to
allow for exploration or too much expanded for convergence.

[Code S2]
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Random Walk MH: Initialization

Where does the MCMC chain start?

• Burn-in, run several samples at the beginning that are not
store as objective sample for approximation.

• For gradient based methods, do not start in modes as
∇ log p(x) = 0.

• To reduce dependence on the initial state, run several chains
in parallel from different starting points.
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Gibbs sampler: basic idea

For multivariate distributions.

Idea: update one coordinate at a time.

Example in 3D Target density: p(x1, x2, x3), from current sample
point, (x1, x2, x3)

x
(t+1)
1 ∼ p(x1 | x(t)

2 , x
(t)
3 )

x
(t+1)
2 ∼ p(x2 | x(t+1)

1 , x
(t)
3 )

x
(t+1)
3 ∼ p(x3 | x(t+1)

1 , x
(t+1)
2 ).

In general. For d-dimensional x = (x1, . . . , xd), one Gibbs sweep
is

x
(t+1)
i ∼ p

(
xi | x(t+1)

1 , . . . , x
(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
d

)
, i = 1, . . . , d,

[Code S3]
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Gibbs Sampling: Comments

• When full conditional distributions are not available in
closed form, Gibbs can be combined with
Metropolis–Hastings.

x
(t+1)
i ∼ p

(
xi | x(t+1)

1 , . . . , x
(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
d

)
, i = 1, . . . , d,
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Gibbs Sampling: Comments

• Blocked Gibbs: update grouped variables.

In a GMM, update the means latent variables at once.

• Collapsed Gibbs: analytically integrate out some parameters
so that fewer variables are sampled.

In a GMM we can integrate out the component means and
sample only the latent labels z = 1, 2, . . . , K. In each step we
also recompute the target statistics.
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Auxiliary variable MCMC: basic ideas

Core Idea: Simplification via Expansion

• Introduce an auxiliary variable u, defining a new joint
distribution p(x, u) such that:

1. In the end we compute p(x) =
∑

u p(x, u).
2. The joint distribution is known.
3. The conditional distributions p(x|u) and p(u|x) are easy to

sample from.

Miguel Santos (ICMAT) PML 3. Markov chain Monte Carlo Probabilistic ML Reading Group 24



Example: Slice sampling

• Auxiliary Variable u: The auxiliary variable u is sampled
from a uniform distribution.

• Why it works?

p̂(x, v) =


1

Zp
, 0 ≤ v ≤ p̃(x),

0, otherwise,∫
p̂(x, v) dv =

∫ p̃(x)

0

1
Zp

dv = p̃(x)
Zp

= p(x).

• The Sampling Gibbs Cycle:
1. Vertical Step (Sample u): Sample u(t+1) uniformly from the

interval [0, p(x(t))].
2. Horizontal Step (Sample x): Sample x(t+1) uniformly from

the ”slice” or region S = {x : u(t+1) < p(x)}.
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Hamiltonian Monte Carlo: basic idea

• Designed for high-dimensional distributions.

• Introduce an auxiliary momentum variable v ∼ N (0, Σ) to
define the Hamiltonian

H(x, v) = E(x) + K(v) = E(x) + 1
2v⊤Σ−1v,

where E(x) = − log p(x) is the potential energy.

• Hamiltonian dynamics:

dx

dt
= Σ−1v,

dv

dt
= −∇E(x).
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HMC visualization

Figure 2: HMC visualization
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Numerical approximation: leapfrog integrator

• Given step size η > 0, mass matrix Σ, and L number of
updates the leapfrog updates are:

vl+ 1
2

= vl −
η

2 ∇E(xl),

xl+1 = xl + η Σ−1vl+ 1
2
,

vl+1 = vl+ 1
2
− η

2 ∇E(xl+1).

• Metropolis accept/reject based on the change in H.

A = min
{
1, exp

[
−H(x∗, v∗) + H(xt−1, vt−1)

]}
.
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HMC Algorithm

Algorithm 1 Hamiltonian Monte Carlo
1: Input: η, L, Σ, number of samples N

2: Initialize x0

3: for t = 1 to N do
4: Sample new momentum vt−1 ∼ N (0, Σ)
5: Set (x′

0, v′
0)← (xt−1, vt−1)

6: for ℓ = 1 to L do
7: Leapfrog Update.
8: end for
9: Proposal: (x∗, v∗)← (x′

L, v′
L)

10: Accept/reject probability:
α← min

{
1, exp

[
−H(x∗, v∗) + H(xt−1, vt−1)

]}
11: end for
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HMC Extension: NUTS

No-U-Turn Sampler (NUTS) Motivation: HMC requires of the
number of leapfrog steps L, the step size η, and the mass matrix
Σ.

• Choosing L: builds trajectories forward and backward in time
and stops automatically when the path starts to turn back on
itself (a “no U-turn” condition).

• Choosing η: The step size is adapted during a burn-in.

• Choosing Σ: The mass matrix is estimated during burn-in,

Σ = E
[
(X−X)(X−X)T

]
[Code S5]
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HMC Extension: Riemann Manifold HMC

Idea: Replace the fixed mass matrix Σ with a
position-dependent metric G(x), so that HMC moves on a
Riemannian manifold adapted to the local geometry of the
target.

i. Hessian
Σ(x) = ∇2E(x).

ii. Fisher information matrix:

Σ(x) = I(x) = −Ep(x|D)
[
∇2

x log p(x | D)
]
.
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HMC Extensions: Stochastic Gradient HMC

• Langevin dynamics (L = 1): special case of HMC,

xt+1 = xt − η∇E(xt) +
√

2η ξt, ξt ∼ N (0, I).

• Stochastic Gradient Langevin Dynamics (SGLD): minibatch
estimate of the gradient.

• Variance reduction: SGLD with control variates (SGLD-CV):
use a reference point xref (e.g. updated when t ≡ 0 (mod τ))

∇̂cvE(xt) = ∇E(xref) + N

B

∑
n∈St

[
∇En(xt)−∇En(xref)

]
.
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Stochastic Gradient HMC (SG-HMC)

• Idea: Combine the previous approaches
• Use a noisy gradient estimator

g(xt, ξt) ≈ ∇E(xt),

where ξt encodes the randomness.

A simple SG-HMC update can be written as:

xt+1 = xt + η vt −
η2

2 g(xt, ξt),

vt+1 = vt −
η

2 g(xt, ξt)−
η

2 g(xt+1, ξt+1/2).
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Convergence

Motivation I: The initial state may be far from the
high-probability region of the target distribution.

• We introduce the burn-in period.
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Practical convergence diagnostics

Motivation II: Even after burn-in, we must check whether the
chain has effectively is exploring the target distribution well.

• Multiple chains: for comparison.
• Autocorrelation plots: ℓ autocorrelation ρℓ = corr(xi, xi+ℓ).
• Potential scale reduction (R-hat): compare variance

between chains and within chains.
• Effective Sample Size (ESS):

• Integrated autocorrelation time τint = 1 + 2
∑∞

ℓ=1 ρℓ.

• For a chain of length n, the effective sample size is

ESS = n

τint
.

[Code S5]
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Extensions I: Reversible Jump MCMC (RJMCMC)

• Objective: The dimension of the parameter vector is not
fixed.

Example: Gaussian mixture model (GMM) where the number
of components K is unknown.

• A Markov chain state is (k, θk):

π(k, θk) ∝ p(data | k, θk) p(θk | k) p(k)

• Key idea of RJMCMC: enlarge the space with auxiliary
variables and use dimension-matching transformations and
work on a fixed-dimensional joint space.
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RJMCMC: Proposals with Auxiliary Variables

• State: (k, θk) in model Mk.
• Propose move to model Mk′ :

1. Model index:
k′ ∼ q(k′ | k).

2. Auxiliary variables:

u ∼ qk→k′(u | θk), u ∈ Rrk→k′ .

3. Dimension-matching transformation between models:

(θk′ , u′) = Tk→k′(θk, u), (θk, u) = Tk′→k(θk′ , u′),

with inverse maps Tk′→k = T −1
k→k′
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RJMCMC: Acceptance Probability

A = min{1, α}

α =
{

π(k′, θk′)
π(k, θk)︸ ︷︷ ︸
posterior

ratio

q(k | k′)
q(k′ | k)︸ ︷︷ ︸

model index
proposal ratio

qk′→k(u′ | θk′)
qk→k′(u | θk)︸ ︷︷ ︸

auxiliary
proposal ratio

∣∣∣∣det ∂Tk→k′(θk, u)
∂(θk, u)

∣∣∣∣︸ ︷︷ ︸
Jacobian

term

}
.

[Code S6]
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Extensions II: Simulated Annealing (SA)

• Used to find the global optimum of a multimodal energy function
E(x).

• Define a tempered distribution:

pT (x) ∝ exp
(
−E(x)

T

)
, T ↓ 0.

• Cooling schedule: e.g. Tt+1 = γTt, γ ∈ (0, 1).
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SA

Figure 3: Temperature effect on Simulated Annealing

Miguel Santos (ICMAT) PML 3. Markov chain Monte Carlo Probabilistic ML Reading Group 43



Contents

Introduction

Basis of Markov chain Monte Carlo

Famous MCMC Algorithms

Metropolis-Hastings (MH)

Gibbs Sampling

Auxiliary Variable MCMC

Hamiltonian Monte Carlo (HMC)

Convergence

Extensions

Conclusions

Miguel Santos (ICMAT) PML 3. Markov chain Monte Carlo Probabilistic ML Reading Group 44



Key Takeaways

Core concepts:

1. Understand the key concepts of MCMC
2. Review different algorithms: MH, Auxiliary variables, Gibss,

HMC.
3. Review cutting-edge gradient based MCMC algorithms and

extensions
4. Get the sufficent knowledge to verify convergence and

performance.
5. Your own code: Numpyro, Pymc, Pyro. or STAN,

OpenBUGS
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Extra refs

Langevin Dynamic: Girolami, M. and Calderhead, B. (2011).
Riemann manifold Langevin and Hamiltonian Monte Carlo
methods. JRSSB.

RJMCMC Green, P. J. (1995). Reversible Jump Markov Chain
Monte Carlo computation and Bayesian model determination.
Biometrika, 82, 711–732.

Thinning: Riabiz, M. et al. (2022). Optimal thinning of MCMC
output. JRSSB.

HMC with repulsive forces: Gallego, V. and Ŕıos Insua, D.
(2020). Stochastic gradient MCMC with repulsive forces.
arXiv:1812.00071.
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Questions?

Questions?
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Next Session

Sequential Monte Carlo (Ch. 13)
Dec 17, 2025

Mario Chacón-Falcón
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