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The Bayesian Inference Problem

= We model data D and latent variables x through a joint
p(z,D) = p(D | z)p(z).

= The goal is to infer the posterior:

p(D | D)pz)

p(e| D) =P

= Examples:

= Regression: predict outcomes with uncertainty intervals.
= Clustering: infer mixture components and their probabilities.
= Neural networks: estimate uncertainty in model parameters.
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Why Exact Inference is Hard

= The evidence
p(a@) = [ pla.D)dz
is rarely tractable.

= No analytical solution for p(D | x)
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Previous chapter: VI

= Introduce tractable distribution ¢(z) to approximate the

true posterior.
= Turn inference into optimization: argmax,co £(q)

= £ measures how similar p and ¢ are.
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MCMC vs Variational Inference

Vi MCMC
= Approximation based. = Sample based.
= Accuracy depends on the = Asymptotically exact.
selected family. = Slow for high dimension.
= Fast. = Hard to scale. (Not
= Scales with SGD. impossible!!!)
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Basis of MCMC

= Monte Carlo: random sampling, usually used to estimate
expectations of the form

where X; ~ 7 i.i.d.

Example: estimating 7

Figure 1: Monte Carlo simulations for Estimating 7
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Basis of MCMC

= Markov Chain:
= Sequence (Xo, X1, Xo,...) with

P(Xt+1 & A | Xt7Xt,17 . ) = P(Xt+1 & A | Xt)

= Stationary distribution: the distribution of X; does not
change over time.
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Basis of MCMC

Markov Chain Monte Carlo (MCMC):
= Objective: build a sample {zg, z1,..., 2N} of p(z)
= Random sampling sequentially xg — 1 — 22 — .. ..
= p(x) is an stationary distribution of the built Markov Chain.

= “The time spend in each state x* is proportional to the

objective distribution p(z*)
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Basis of MCMC

MCMC Chain (t = 2)

MCMC Chain (t = 32)
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Metropolis—Hastings

Elements

= Proposal distribution / transition kernel g:

Tp, — Tnil, ZTn+1 ~ ¢(Tnt1 | Tn)

Example: Zp11 = 2 + €, with € ~ N(0,021,), so that
Q(xn—i-l | xn) = N(in, O'QId).
= Acceptance probability:

A=mind1, p(Tnt1) ] q(Tn | Tny1)
p(zn) q(Tnt1 | Tn)
—— —_——

target density ratio proposal correction

[GIF]
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Kernel examples

Examples of proposal ¢

= Random walk proposal: 2’ = x + ¢, with € ~ N (0, 021y), so
that q(2' | x) = N(2'; 2, 0%1,).
» Independent proposal (importance—sampling style):
q(z' | z) = q(a").
= Mixture proposal: g(z’ | ) = >, wi qx(z’ | ), with wy, > 0
and >, wp = 1.
» Data-driven proposal: q(z' | x, D), where D denotes the data.
» Adaptive MCMC: (' | ) = N (z; z, 7(t)I4) with
T(t) =10 (1 + t%) where ¢ is the iteration index.
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Proposal distributions for MH

Conditions on the proposal ¢
= Support containment:
supp(p) € supp (q(- | z)) Ve,
i.e. any point where p(z) > 0 must be reachable with

q(z' | x) > 0.

= Robust behaviour: ¢ should not be too concentrated to
allow for exploration or too much expanded for convergence.

[Code S2]
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Random Walk MH: Initialization

Where does the MCMC chain start?

= Burn-in, run several samples at the beginning that are not
store as objective sample for approximation.

= For gradient based methods, do not start in modes as
Vlogp(z) =0.

= To reduce dependence on the initial state, run several chains
in parallel from different starting points.
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Gibbs sampler: basic idea

For multivariate distributions.

Idea: update one coordinate at a time.

Example in 3D Target density: p(x1,x2,x3), from current sample
point, (xly €2, $3)

o~ plan | 7y, 7))

23t ~ p(ag | 2, 2{0)

mz())t—‘rl) -~ p(l’s ‘ .Tgt—H),Hng_l)).

In general. For d-dimensional z = (z1,...,24), one Gibbs sweep
is

) | P a0, 00, o), i

[Code S3]
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Gibbs Sampling: Comments

= When full conditional distributions are not available in
closed form, Gibbs can be combined with
Metropolis—Hastings.

x§t+1) (t+1) (t+1) (1) (t))’ i=1,...,d,

~p(@s [Ty ] By Ty
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Gibbs Sampling: Comments

= Blocked Gibbs: update grouped variables.

In a GMM, update the means latent variables at once.

= Collapsed Gibbs: analytically integrate out some parameters
so that fewer variables are sampled.

In a GMM we can integrate out the component means and
sample only the latent labels z =1,2,..., K. In each step we

also recompute the target statistics.
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Auxiliary variable MCMC: basic ideas

Core ldea: Simplification via Expansion

= Introduce an auxiliary variable u, defining a new joint
distribution p(x,u) such that:
1. In the end we compute p(z) = >, p(x, u).
2. The joint distribution is known.
3. The conditional distributions p(x|u) and p(u|x) are easy to
sample from.
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Example: Slice sampling

= Auxiliary Variable u: The auxiliary variable u is sampled
from a uniform distribution.

= Why it works?

1

7})7 0 S v S ﬁ(x)v

0, otherwise,

/ﬁ(-’mv) dv = /Oﬁ(x) led’v = ﬁz) = p(x).

= The Sampling Gibbs Cycle:
1. Vertical Step (Sample u): Sample u(*+1) uniformly from the
interval [0, p(x(®)].
2. Horizontal Step (Sample x): Sample x**1) uniformly from
the "slice” or region S = {x : u*™) < p(x)}.

ﬁ(xvv) -
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Hamiltonian Monte Carlo: basic idea

= Designed for high-dimensional distributions.

» Introduce an auxiliary momentum variable v ~ N(0,Y) to
define the Hamiltonian

H(z,v) =E(z)+ K(v) = E(z) + %UTE_I’L),
where E(z) = —logp(x) is the potential energy.

= Hamiltonian dynamics:

dz 1
i X, — = —VE(z).
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HMC visualization

Figure 2: HMC visualization

Miguel Santos (ICMAT)




Numerical approximation: leapfrog integrator

= Given step size 1 > 0, mass matrix >, and L number of
updates the leapfrog updates are:

n
Ul =Ty VE(x1),
Ti+1 =T+ nZ_lvH%,

N
v = Uyt — 5 VE@i).
= Metropolis accept/reject based on the change in H.

A=min {1, exp [ — H(z",v*) + H(z¢—1,vt-1)] } -
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HMC Algorithm

Algorithm 1 Hamiltonian Monte Carlo

1: Input: 7, L, ¥, number of samples N
2: Initialize xg
3: fort=1to N do
4:  Sample new momentum v;_1 ~ N (0, X)
Set (z(,v() < (X4—1,v¢—1)
for {=1to L do
Leapfrog Update.
end for

R ®JF P

Proposal: (z*,v*) < (2, v})
10:  Accept/reject probability:

a < min {1, exp [ — H(z*,v*) + H(x4—1,v-1)] }
11: end for
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HMC Extension: NUTS

No-U-Turn Sampler (NUTS) Motivation: HMC requires of the
number of leapfrog steps L, the step size 7, and the mass matrix
I

= Choosing L: builds trajectories forward and backward in time
and stops automatically when the path starts to turn back on
itself (a “no U-turn” condition).

s Choosing 7: The step size is adapted during a burn-in.
= Choosing >: The mass matrix is estimated during burn-in,
$=E|(X-X)(X-X)]

[Code S5]
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HMC Extension: Riemann Manifold HMC

Idea: Replace the fixed mass matrix > with a
position-dependent metric G(x), so that HMC moves on a
Riemannian manifold adapted to the local geometry of the

target.

i. Hessian
Y(z) = V2E(x).

ii. Fisher information matrix:

Y(z) = Z(x) = —Epep) [Vi log p(z | D)].
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HMC Extensions: Stochastic Gradient HMC

» Langevin dynamics (L = 1): special case of HMC,
Te1 = 2t — N VE(zt) + /20, & ~ N(0,1).

= Stochastic Gradient Langevin Dynamics (SGLD): minibatch
estimate of the gradient.

= Variance reduction: SGLD with control variates (SGLD-CV):
use a reference point z'f (e.g. updated when t = 0 (mod 7))

VeuB(r) = VE@™) + 3 3 [VEa(er) — VEa(a™)].
neSt
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Stochastic Gradient HMC (SG-HMC)

= Idea: Combine the previous approaches

= Use a noisy gradient estimator

9(xt, &) = VE(xy),

where & encodes the randomness.

A simple SG-HMC update can be written as:

2

Tyl = Tt + N0 — %g(xt@%

n n
Vip1 = Vg — ig(xt,&) - §g($t+1,§t+1/2)-
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Convergence

Motivation I: The initial state may be far from the
high-probability region of the target distribution.

= We introduce the burn-in period.

Miguel Santos (ICMAT) PML 3. Markov chain Monte Carlo Probabilistic ML Reading Group 36



Practical convergence diagnostics

Motivation Il: Even after burn-in, we must check whether the
chain has effectively is exploring the target distribution well.

= Multiple chains: for comparison.

= Autocorrelation plots: ¢ autocorrelation py = corr(x;, ;).

= Potential scale reduction (R-hat): compare variance
between chains and within chains.

= Effective Sample Size (ESS):

= Integrated autocorrelation time 7,y = 1 + 2 Z;’;l pe-
= For a chain of length n, the effective sample size is

ESS = ~.

Tint

[Code S5]
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Extensions I: Reversible Jump MCMC (RJMCMC)

= Objective: The dimension of the parameter vector is not
fixed.
Example: Gaussian mixture model (GMM) where the number
of components K is unknown.

= A Markov chain state is (k, 0y):
m(k,0) o p(data | k,0r) p(0 | k) p(k)

= Key idea of RIMCMC: enlarge the space with auxiliary
variables and use dimension-matching transformations and

work on a fixed-dimensional joint space.
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RJMCMC: Proposals with Auxiliary Variables

= State: (k,0) in model M.
= Propose move to model My, :

1. Model index:
K ~q(K' | k).

2. Auxiliary variables:
U~ Qeoske (u | Or), u € RE=F,
3. Dimension-matching transformation between models:
O, ') = Ty (O, u), (O, u) = Tk (Opr, '),

AngL F =1l
with inverse maps Ty =1},
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RIJMCMC: Acceptance Probability

A =min{l,a}

0Ty (Op, u)

_ ) 7K 0k) a(k | F) gk’ | Or) et
m(k,0k)  q(K' | k) quow(u] Ok) (O, )
posterior  model index auxiliary Jacobian
ratio proposal ratio  proposal ratio term
[Code S6]
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Extensions Il: Simulated Annealing (SA)

= Used to find the global optimum of a multimodal energy function

= Define a tempered distribution:

pr() o< exp (—E;x)) ., Tlo.

= Cooling schedule: e.g. Ty 1 =T}, v € (0,1).
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SA

Figure 3: Temperature effect on Simulated Annealing

Miguel Santos (ICMAT)

43



Introduction

Famous MCMC Algorithms

Convergence
Extensions

Conclusions



Key Takeaways

Core concepts:

1. Understand the key concepts of MCMC

2. Review different algorithms: MH, Auxiliary variables, Gibss,
HMC.

3. Review cutting-edge gradient based MCMC algorithms and
extensions

4. Get the sufficent knowledge to verify convergence and

performance.

5. Your own code: Numpyro, Pymc, Pyro. or STAN,
OpenBUGS
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Langevin Dynamic: Girolami, M. and Calderhead, B. (2011).
Riemann manifold Langevin and Hamiltonian Monte Carlo
methods. JRSSB.

RIMCMC Green, P. J. (1995). Reversible Jump Markov Chain
Monte Carlo computation and Bayesian model determination.
Biometrika, 82, 711-732.

Thinning: Riabiz, M. et al. (2022). Optimal thinning of MCMC
output. JRSSB.

HMC with repulsive forces: Gallego, V. and Rios Insua, D.
(2020). Stochastic gradient MCMC with repulsive forces.
arXiv:1812.00071.
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Questions?




Next Session

Sequential Monte Carlo (Ch. 13)
Dec 17, 2025

Mario Chacén-Falcén
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