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The Bayesian Inference Problem

• We model data x and latent variables z through a joint
p(x, z) = p(x | z)p(z).

• The goal is to infer the posterior:

p(z | x) = p(x | z)p(z)
p(x)

.

• Examples:
• Regression: predict outcomes with uncertainty intervals.
• Clustering: infer mixture components and their probabilities.
• Neural networks: estimate uncertainty in model parameters.

[Code S1]
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The Bayesian Inference Problem

• We model data x and latent variables z through a joint
p(x, z) = p(x | z)p(z).

• The goal is to infer the posterior:

p(z | x) = p(x | z)p(z)
p(x)

.

• This lets us:
• Quantify uncertainty.
• Compare models via p(x).
• Make predictions for new data.
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Why Exact Inference is Hard

• The evidence
p(x) =

∫
p(x, z) dz

is rarely tractable.
• Causes:

• High-dimensional latent spaces.
• Non-conjugate models.
• Nonlinear likelihoods (e.g., neural nets).
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Example: Intractable Posterior

Bayesian logistic regression:

p(yi = 1 | xi, w) = σ(w⊤xi), p(w) = N (0, I)

Posterior:

p(w | X, y) ∝ p(w)
∏
i

σ(w⊤xi)yi(1− σ(w⊤xi))1−yi

• No closed form for p(w | X, y).
• The integral for p(X, y) has no

analytic solution.
• Numerical integration infeasible

for large w.

Example posterior for 2D weights —
non-Gaussian and curved.
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Key Idea of VI

• Introduce tractable distribution q(z).
• Optimize it to approximate the true posterior.
• Turn inference:

p(z|x)

into optimization:
arg max

q∈Q
L(q).
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VI in Modern ML

• VAEs and deep generative models.
• Bayesian deep learning.
• Latent variable models: GMM, topic models.
• Probabilistic graphical models.
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MCMC vs Variational Inference

MCMC
• Sample based.
• Asymptotically exact.
• Slow for high dimension.
• Hard to scale.

VI
• Approximation based.
• Flexible families.
• Fast.
• Scales with SGD.
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Visualization of Approximation
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Key Idea of VI

arg max
q∈Q
L(q, p(z|x))
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Key Idea of VI

arg max
q∈Q
L(q, p(z|x))
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KL Divergence

KL(q∥p) = Eq
[
log q(z)

p(z)

]

• Measures how different two distributions are.
• Always non-negative; zero only when q = p.
• Asymmetric:

KL(q∥p) ̸= KL(p∥q).
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Mode-Seeking vs. Mode-Covering

• Minimizing KL(q∥p):
• Penalizes placing mass

where p is low.
• Encourages focusing on a

single mode.
• Mode-seeking behavior.

• Minimizing KL(p∥q):
• Penalizes missing any

region where p has mass.
• Encourages spreading over

all modes.
• Mode-covering behavior.

[Code S2]
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KL Divergence

• In Variational Inference, we minimize KL(q∥p) to find the
closest tractable q(z).

KL(q∥p) = Eq [log q(z)− log p(z|x)]
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Why KL?

1. Mathematical elegance: Gives us the ELBO decomposition

log p(x) = ELBO(q) + KL(q∥p)

2. Information-theoretic foundation: Natural measure of
distribution difference

3. Computational tractability: Only requires evaluating
log p(x, z) and sampling q

4. Entropy connection:

KL(q∥p) = −H(q)− Eq[log p(z)]

5. Practical success: Works well for most applications

Alternative divergences exist but sacrifice at least one of
these properties
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Why Do We Use KL(q∥p) and Not KL(p∥q)?

The ideal objective: Minimize
KL(p∥q) = Ep(z|x)[log p(z|x)− log q(z)]

• Problem: Requires sampling from p(z|x) — but that’s
intractable!

• This is the whole problem we’re trying to solve

What we can compute: KL(q∥p) = Eq(z)[log q(z)− log p(z|x)]

• Only requires sampling from q(z) (which we design to be easy)
• Only requires evaluating log p(x, z) (the joint, which we have)

We use KL(q∥p) because it’s computable,
not because it’s theoretically optimal
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Can We Do Better?

Alternative objectives that avoid KL(q∥p):

1. Expectation Propagation (EP)
• Minimizes KL(p∥q) locally
• Mode-covering, but more complex

2. α-divergences
• Interpolate between KL(q∥p) and KL(p∥q)
• α = 1: forward KL, α = 0: reverse KL

3. Mixture variational families
• q(z) =

∑
k πkqk(z) can capture multiple modes
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The Bottom Line

Why KL(q∥p)?

1. It’s mathematically equivalent to maximizing the ELBO
2. It only requires evaluating log p(x, z) and sampling from q

3. It’s computationally tractable for complex models

The price we pay:

• Mode-seeking behavior
• Underestimation of uncertainty
• May miss important regions of posterior

VI trades off computational feasibility
for approximation quality
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ELBO Derivation

KL(q∥p) = Eq [log q(z)− log p(z|x)]
= Eq [log q(z)− log p(x|z)− log p(z) + log p(x)]

and using the non-negativity of the KL divergence

log p(x) = KL(q∥p) + Eq [log p(x|z) + log p(z)− log q(z)]
≥ Eq [log p(x|z) + log p(z)− log q(z)] = ELBO(q)
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ELBO Derivation

KL(q∥p) = Eq [log q(z)− log p(z|x)]
= Eq [log q(z)− log p(x|z)− log p(z) + log p(x)]

and using the non-negativity of the KL divergence

log p(x) = KL(q∥p) + Eq [log p(x|z) + log p(z)− log q(z)]
≥ Eq [log p(x|z) + log p(z)− log q(z)] = ELBO(q)
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ELBO Derivation

We have:

log p(x) = ELBO(q) + KL(q∥p) = constant.

• Maximize ELBO to approximate posterior.
• Equivalent to minimizing KL divergence.
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ELBO as Optimization Objective

ELBO(q) = Eq [log p(x|z) + log p(z)− log q(z)]

ELBO balances:

• Fit to data: Eq[log p(x, z)]
• Regularization: entropy of q
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ELBO Intuition

Optimization process

Value

log p(x)
ELBO(q)KL(q∥p)

As q improves, ELBO ↑ and KL ↓

Key insight: Maximizing ELBO pushes q closer to p(z|x)

[Code S3]
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Two Approaches to Variational Inference

Variational Inference

Fixed-Form VI Free-Form VI

Choose qψ(z),
optimize ψ

Derive optimal q∗

from calculus

Today’s roadmap:

• Fixed-form: gradient-based optimization
• Free-form: coordinate ascent (CAVI)
• Scaling approaches with stochasticity (SVI)
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Fixed-Form vs Free-Form VI

Fixed-Form VI
Choose the family first

qψ(z) ∈ Q

Examples:
• Gaussian: q(z) = N (µ,Σ)
• Mean-field:
q(z) =

∏
i qi(zi)

• Normalizing flows

Then optimize:

ψ∗ = arg max
ψ
L(qψ)

Free-Form VI
Derive the optimal form
Calculus of variations:

log q∗(zi) = Eq¬i [log p(x, z)]+C

• Don’t choose q
parametrically

• Find best q within
constraints

• Requires conjugacy for
tractability

Key trade-off: Flexibility vs Tractability
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Fixed-Form VI: The Setup

Goal: Find the best approximation in family Q

ψ∗ = arg max
ψ
L(qψ) where L(q) = Eq[log p(x, z)]−Eq[log q(z)]

Key insight: Turn inference into optimization

• Pick any differentiable family qψ(z)
• Adjust ψ via gradient ascent
• Maximizing ELBO ⇔ Minimizing KL(q∥p)

Challenge: How do we compute ∇ψL(qψ)?
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The Gradient Challenge

Want to compute:

∇ψL(qψ) = ∇ψEqψ [log p(x, z)− log qψ(z)]

Problem: Gradient operator doesn’t go inside expectation easily

z ∼ qψ(z) ⇒ sampling is not differentiable!

Two solutions:

1. Score function estimator — General but high variance
2. Reparameterization trick — Low variance when applicable
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Solution 1: Score Function Estimator

Key identity: (also called REINFORCE, likelihood-ratio)

∇ψEqψ [f(z)] = Eqψ [f(z)∇ψ log qψ(z)]

Pros:

• Black-box: works for any qψ
• No constraints on the distribution

Cons:

• High variance ⇒ slow convergence
• Requires variance reduction techniques

When possible, we prefer the reparameterization trick...
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Solution 2: Reparameterization Trick

Key idea: Express random variable as deterministic transformation

z ∼ qψ(z) ⇒ z = g(ψ, ϵ), ϵ ∼ p(ϵ)

Pablo G. Arce (ICMAT) PML 2. Variational Inference Probabilistic ML Reading Group 34



Solution 2: Reparameterization Trick

Key idea: Express random variable as deterministic transformation

z ∼ qψ(z) ⇒ z = g(ψ, ϵ), ϵ ∼ p(ϵ)

Now gradient flows through g:

∇ψEqψ [f(z)] = Ep(ϵ)[∇ψf(g(ψ, ϵ))]

Benefits:

• Low variance gradients
• Straightforward to implement
• Core technique for modern VI (VAEs, etc.)
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Reparameterization: Gaussian Example

Gaussian distribution: z ∼ N (µψ, σ2
ψ)

Reparameterization:

z = µψ + σψ · ϵ, ϵ ∼ N (0, 1)

Now z is a differentiable function of ψ = (µψ, σψ)

Gradient computation:

• Sample ϵ ∼ N (0, 1)
• Compute z = µψ + σψϵ

• Backpropagate through µψ, σψ
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Reparameterization in Code i

Standard sampling (not differentiable):
z = np.random.normal(mu, sigma) # Can't backprop!

Reparameterized sampling (differentiable):
eps = np.random.randn(*mu.shape) # Sample noise
z = mu + sigma * eps # Deterministic transform

[Code S4 + S5]
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Reparameterization in Code ii

Computing ELBO gradient:

def elbo_gradient(mu, sigma, log_joint):
eps = np.random.randn(n_samples)
z = mu + sigma * eps # Reparameterization
log_q = -0.5*np.log(2*np.pi*sigma**2) \

- (z-mu)**2/(2*sigma**2)
return np.mean(log_joint(z) - log_q)
# Autodiff handles gradient through mu, sigma
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Common Choice: Mean-Field Approximation

Mean-field assumption: Factorize over dimensions

q(z) =
D∏
i=1

qi(zi)

Why use mean-field?

• Dramatically reduces parameters: O(D) vs O(D2)
• Simplifies optimization
• Often sufficient for many applications

Example: Mean-field Gaussian

q(z) =
D∏
i=1
N (zi | µi, σ2

i )
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Mean-Field Limitation: Ignoring Correlations

Issue: True posterior may have correlations

• Mean-field forces diagonal covariance
• Approximation is axis-aligned
• May poorly capture tilted/correlated structure

[Code S6]
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Mean-Field Failure Mode: Variance Underestimation

Recall: We minimize KL(q∥p)

Consequence:

• KL(q∥p) heavily penalizes q having mass where p is small
• Encourages q to be narrower than p
• Results in overconfident, ”peaked” approximations

Example: Correlated Gaussian

p(z) = N
(

0,
[

1 0.8
0.8 1

])
⇒ q(z) = N (z1 | 0, σ2

1)·N (z2 | 0, σ2
2)

Mean-field q cannot capture the correlation and underestimates variance
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Mean-Field Example: Code

True posterior: Correlated Gaussian
Sigma_true = np.array([[1.0, 0.8], [0.8, 1.0]])

Mean-field approximation: Diagonal covariance only
# MFVI restricts to diagonal
Sigma_mf = np.diag([sigma1**2, sigma2**2])
# Cannot represent off-diagonal correlation!

Despite this limitation, mean-field VI remains widely used due to its
simplicity and efficiency
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Scaling Challenge: Large Datasets

Problem: ELBO involves full dataset

L(q) =
N∑
n=1

Eq[log p(xn | z)]− KL(q∥p(z))

Computing gradient requires:

• Iterating over all N data points
• Infeasible for large N (millions/billions of examples)

Idea: Can we use minibatches instead?

• Subsample data points
• Get unbiased gradient estimates
• Scale to massive datasets
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Stochastic Variational Inference (SVI)

Key insight: Use stochastic optimization

Unbiased gradient estimator:

1. Sample minibatch B ⊂ {1, . . . , N} with |B| = M

2. Compute gradient on minibatch:

∇ψLB = N

M

∑
n∈B
∇ψEqψ [log p(xn | z)]−∇ψKL(qψ∥p)

3. Update: ψ ← ψ + ρ∇ψLB

Combines:

• Reparameterization trick (low variance)
• Stochastic gradient descent (scalability)
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SVI: Practical Algorithm

# Initialize variational parameters
lambda = initialize()

for iteration in range(max_iters):
# Sample minibatch
batch = sample_minibatch(data, batch_size)

# Estimate gradient using reparameterization
grad = estimate_gradient(lambda, batch)

# SGD/Adam update
lambda = optimizer.step(lambda, grad)

Key advantage: Each iteration is O(M), not O(N)

[Code S7]
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Free-Form VI: A Different Philosophy

Recall fixed-form VI:

• Choose qψ(z) family (e.g., Gaussian)
• Optimize ψ via gradients

Free-form VI asks:
What if we don’t choose the form of q upfront?

Approach:

• Assume factorization: q(z) =
∏
i qi(zi)

• Use calculus of variations to derive optimal q∗
i

• Results in iterative coordinate updates

This leads to Coordinate Ascent Variational Inference (CAVI)
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Coordinate Ascent VI (CAVI): The Update Rule

Optimal factor q∗
i has closed form:

log q∗
i (zi) = Eq¬i [log p(x, z)] + C

where q¬i =
∏
j ̸=i qj(zj)

Intuition:

• Hold all other factors fixed
• Update qi to its ”best response”
• Take expectation over other latent variables
• Alternate updates until convergence

Requirement: Model must be conjugate (exponential family)
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CAVI Intuition

Think of it as coordinate ascent on the ELBO:

q1

q2
L contours

• Each update: maximize ELBO w.r.t. one factor
• ELBO increases monotonically
• Guaranteed to reach local optimum
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CAVI Example: Gaussian Mixture Model

Latent variables:

• zn: cluster assignment for data point n
• µk: cluster means
• π: mixing proportions

CAVI alternates updates:

1. Update responsibilities: q(zn) ∝ exp{E[log p(xn, zn | µ, π)]}
2. Update cluster means: q(µk) ∝ exp{E[log p(x, z, µk)]}
3. Update mixing weights: q(π) ∝ exp{E[log p(x, z, π)]}

Conjugacy ⇒ All updates are closed-form!

Pablo G. Arce (ICMAT) PML 2. Variational Inference Probabilistic ML Reading Group 51



CAVI: General Algorithm

# Initialize all factors
q = initialize_factors()

while not converged:
for i in latent_variables:

# Update factor i given all others
q[i] = compute_optimal_factor(

q_except_i=q[:i] + q[i+1:],
joint_log_prob=log_p

)

# Check ELBO convergence
if elbo_change < tolerance:

break

[Code S8]
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CAVI: Convergence Behavior

Guarantees:

• ELBO increases monotonically: L(t+1) ≥ L(t)

• Converges to a local maximum
• Deterministic updates (reproducible)

Practical considerations:

• Initialization matters (multiple random starts)
• May converge to poor local optima
• Slower than gradient-based VI for high-dimensional problems

Limitation: Requires full dataset pass per update
(Can we make CAVI scalable too? Yes! Stochastic variants exist)
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Method Comparison

Method Family Choice Scalability Needs Conjugacy

Fixed-Form Parametric qψ With SVI No
CAVI Derived from L No* Yes
SVI Parametric qψ Yes No

*Stochastic CAVI variants exist
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Method Comparison

Practical guidance:

• Large scale + flexible model: SVI with reparameterization
• Conjugate exponential family: CAVI
• Complex posterior structure: Normalizing flows, neural VI

The landscape:

• Fixed-form VI: flexible, scalable, works anywhere
• CAVI: elegant closed-form when conjugate
• SVI: best of both worlds for large-scale problems
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Limitations of MFVI

• Underestimates posterior variance.
• Cannot capture correlations.
• KL(q‖p) is mode-seeking.
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Structured Variational Families

• Add correlations.
• Tree-structured VI.
• Matrix-variate Gaussians.
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Normalizing Flows

• Transform simple q(z) to complex distribution.
• Invertible mapping with tractable Jacobian.

[Code S10 + S11]
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Extra: Score-Matching VI

Key idea: Instead of matching densities (ELBO), match score
functions:

∇z log qλ(z) ≈ ∇z log p(z|x).

Score-Matching VI (GSM-VI):

• Iteratively adjusts qλ to match posterior scores at sampled
points.

• Closed-form updates when qλ is Gaussian.

Pros:

• Black-box (only needs differentiable joint).
• Often 10–100× fewer gradients than ELBO methods.
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Key Takeaways

Core concepts:

1. VI converts inference into optimization via ELBO
2. Two paradigms: fixed-form vs free-form
3. Reparameterization enables low-variance gradients
4. Mean-field simplifies but loses correlations
5. Stochasticity enables scalability
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Extra refs

Blei, D. et al. (2017). Variational inference: A review for
statisticians. JASA.

Knoblauch, J. et al. (2022). An Optimization-centric View on
Bayes’ Rule. JMLR.

Modi, C. et al. (2023). Variational inference with Gaussian score
matching. NeurIPS.
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Questions?

Questions?
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Next Session

Monte Carlo & Hamiltonian Methods (Ch. 12)
Dec 3, 2025

Miguel Santos
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