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The Bayesian Inference Problem

= We model data x and latent variables z through a joint
p(z,2) = p(z | 2)p(2).

= The goal is to infer the posterior:

plz | 2)p(z)

(] ) = BE 2

= Examples:

= Regression: predict outcomes with uncertainty intervals.
= Clustering: infer mixture components and their probabilities.
= Neural networks: estimate uncertainty in model parameters.

[Code S1]

Pablo G. Arce (ICMAT) PML 2. Variational Inference Probabilistic ML Reading Group



The Bayesian Inference Problem

= We model data x and latent variables z through a joint
p(z,2) = p(z | 2)p(2).

= The goal is to infer the posterior:

plz | 2)p(z)

p(z | x) =
= This lets us:

= Quantify uncertainty.
= Compare models via p(z).
= Make predictions for new data.
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Why Exact Inference is Hard

= The evidence

is rarely tractable.
= Causes:

= High-dimensional latent spaces.
= Non-conjugate models.
= Nonlinear likelihoods (e.g., neural nets).
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Example: Intractable Posterior

Bayesian logistic regression:
plyi =1 zi,w) = o(w'z;), p(w) =N(0,1)
Posterior:
plw | X,y) o p(w) [To(w’ ) (1 — o(wa;)) ¥
i
= No closed form for p(w | X, vy).

= The integral for p(X,y) has no
analytic solution.

= Numerical integration infeasible

for large w.

-5 0 5

Example posterior for 2D weights —
non-Gaussian and curved.
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Key ldea of VI

= Introduce tractable distribution ¢(z).

= Optimize it to approximate the true posterior.

= Turn inference:
p(z|z)

into optimization:

argmax £(q).

qeQ
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VI in Modern ML

VAEs and deep generative models.
= Bayesian deep learning.

= Latent variable models: GMM, topic models.

Probabilistic graphical models.
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MCMC vs Variational Inference

MCMC VI

= Sample based.

Approximation based.

Flexible families.

= Asymptotically exact.
Fast.
Scales with SGD.

= Slow for high dimension.

= Hard to scale.
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Argin A L(q,p(z|z))




Argin A L(g,p(z]z))




KL Divergence

KL(qllp) = Eq [log Zi;]

= Measures how different two distributions are.
= Always non-negative; zero only when ¢ = p.

= Asymmetric:
KL(qllp) # KL(pllq)-
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Mode-Seeking vs. Mode-Covering

= Minimizing KL(¢||p): = Minimizing KL(p||q):
= Penalizes placing mass = Penalizes missing any
where p is low. region where p has mass.
= Encourages focusing on a = Encourages spreading over
single mode. all modes.
= Mode-seeking behavior. = Mode-covering behavior.
0.2 '\ - fnm KL[p;q]

Na —_— KL[
i J\
0.0

-5 20

[Code S2]
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KL Divergence

= In Variational Inference, we minimize KL(g||p) to find the
closest tractable ¢(z).

KL(q|lp) = Eq [log q(2) — log p(z|x)]
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Why KL?

1. Mathematical elegance: Gives us the ELBO decomposition
log p(x) = ELBO(q) + KL(ql|p)

2. Information-theoretic foundation: Natural measure of
distribution difference

3. Computational tractability: Only requires evaluating
log p(x, z) and sampling ¢

4. Entropy connection:

KL(qllp) = —H(q) — Eq[log p(2)]
5. Practical success: Works well for most applications

Alternative divergences exist but sacrifice at least one of

these properties
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Why Do We Use KL(¢||p) and Not KL(p||q)?

The ideal objective: Minimize
KL(pllq) = Ep(z|z)[log p(z]x) — log q(2)]

= Problem: Requires sampling from p(z|z) — but that's
intractable!

= This is the whole problem we're trying to solve

What we can compute: KL(q||p) = Eq.)[log q(z) — log p(z|z)]

= Only requires sampling from ¢(z) (which we design to be easy)

= Only requires evaluating log p(z, z) (the joint, which we have)

We use KL(¢||p) because it's computable,

not because it's theoretically optimal
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Can We Do Better?

Alternative objectives that avoid KL(q||p):

1. Expectation Propagation (EP)

= Minimizes KL(p||q) locally
= Mode-covering, but more complex

2. a-divergences

= Interpolate between KL(¢||p) and KL(p||q)
= o = 1: forward KL, o = 0: reverse KL

3. Mixture variational families

= ¢(z) = >, m™qr(z) can capture multiple modes
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The Bottom Line

Why KL(q|lp)?

1. It's mathematically equivalent to maximizing the ELBO
2. It only requires evaluating log p(x, z) and sampling from ¢

3. It's computationally tractable for complex models

The price we pay:

= Mode-seeking behavior
= Underestimation of uncertainty

= May miss important regions of posterior

VI trades off computational feasibility
for approximation quality
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KL(gllp) = Eq [log g(z) — log p(z|x)]
= E, [logq(2) — log p(x]2) — log p(=) + log p(x)]




ELBO Derivation

KL(qllp) = Eq [log ¢(2) — log p(z|z)]
= K, [log q(z) — log p(z|2) — log p(2) + log p(z)]

and using the non-negativity of the KL divergence

log p(z) = KL(qllp) + E, [log p(z|2) + log p(z) — log ¢(2)]
> Eq [log p(z|z) + log p(z) —log q(2)] = ELBO(q)
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ELBO Derivation

We have:

logp(z) = ELBO(q) + KL(q||p) = constant.

= Maximize ELBO to approximate posterior.

= Equivalent to minimizing KL divergence.
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ELBO as Optimization Objective

ELBO(q) = Eq [log p(z|2) + log p(z) — log q(z)]
ELBO balances:

= Fit to data: E,[logp(z, 2)]

= Regularization: entropy of ¢
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ELBO Intuition

Value
log p(x)
ELBO(q)

KL(q|lp) :

Optimization process

As ¢ improves, ELBO 1 and KL |

Key insight: Maximizing ELBO pushes ¢ closer to p(z|x)
[Code S3]
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Two Approaches to Variational Inference

/

Variational Inference

Fixed-Form VI

Choose ¢y(2),
optimize

Today’s roadmap:

= Fixed-form: gradient-based optimization

= Free-form: coordinate ascent (CAVI)

= Scaling approaches with stochasticity (SVI)

Pablo G. Arce (ICMAT)
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Free-Form VI

Derive optimal ¢*

from calculus
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Fixed-Form vs Free-Form VI

Fixed-Form VI Free-Form VI
Choose the family first Derive the optimal form
Calculus of variations:
qy(2) € Q
log ¢"(zi) = Eq_,[log p(z, 2)|+C
Examples:
= Gaussian: ¢(z) = N(u, X) ,
= Don't choose ¢
= Mean-field:

parametrically
q4(z) =1l a:(=)

= Normalizing flows

= Find best ¢ within

constraints
Then optimize: = Requires conjugacy for
tractability

Y* = arg maa L(qy)
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Fixed-Form VI: The Setup

Goal: Find the best approximation in family Q

Y" =argmax L(gy) where L{q) =Eq[logp(z, z)| —E,[log g(2)]

Key insight: Turn inference into optimization

= Pick any differentiable family gy (2)

= Adjust v via gradient ascent
= Maximizing ELBO < Minimizing KL(q||p)

Challenge: How do we compute V. L(qy)?
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The Gradient Challenge

Want to compute:

VyL(qy) = VyEq, [logp(z, 2) — log gy (2)]

Problem: Gradient operator doesn't go inside expectation easily

z~qy(z) = sampling is not differentiable!

Two solutions:

1. Score function estimator — General but high variance

2. Reparameterization trick — Low variance when applicable
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Solution 1: Score Function Estimator
Key identity: (also called REINFORCE, likelihood-ratio)

Ve, [f(2)] = Eq, [f(2) Vi log gy (2)]

Pros:

= Black-box: works for any g,

= No constraints on the distribution
Cons:
= High variance = slow convergence

= Requires variance reduction techniques

When possible, we prefer the reparameterization trick...
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Solution 2: Reparameterization Trick

Key idea: Express random variable as deterministic transformation

z~qp(z) =z

= 9(1/}7 6))

e~ p(e)

Original form

~ qg(z[x)

Pablo G. Arce (ICMAT)

Reparameterized form

!

Backprop f
V.t z_ =g(dxe)
x

4

Vof o

: Deterministic node

. : Random node

— : Evaluation of

=P : Differentiation of f
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Solution 2: Reparameterization Trick

Key idea: Express random variable as deterministic transformation

ZN(M,(Z) =2 Z:g(¢a€)7 ENp(e)

Now gradient flows through g:

VT/JEfw [f(Z)] = IE:p(e) [wa(g(% 6))]

Benefits:

= Low variance gradients
= Straightforward to implement

= Core technique for modern VI (VAEs, etc.)
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Reparameterization: Gaussian Example

Gaussian distribution: z ~ N (uy, 07)

Reparameterization:

2= oy + Oy - €, e~N(0,1)

Now z is a differentiable function of 1) = (py, 0y)

Gradient computation:

= Sample € ~ N(0,1)
» Compute z = iy, + oye
= Backpropagate through iy, 0y,
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Reparameterization in Code i

Standard sampling (not differentiable):

z = np.random.normal (mu, sigma) # Can't backprop!

Reparameterized sampling (differentiable):

eps = np.random.randn(*mu.shape) # Sample notise
z = mu + sigma * eps # Deterministic transform

[Code S4 + S5]
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Reparameterization in Code ii

Computing ELBO gradient:

def elbo_gradient(mu, sigma, log_joint):
eps = np.random.randn(n_samples)
z = mu + sigma * eps # Reparameterization
log_q = -0.5*np.log(2*np.pi*sigma**2) \
= (z-mu)**2/ (2*sigma*x*2)
return np.mean(log_joint(z) - log_q)
# Autodiff handles gradient through mu, sigma
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Common Choice: Mean-Field Approximation

Mean-field assumption: Factorize over dimensions

D
q(z) = [] ai(z)
=1

Why use mean-field?

= Dramatically reduces parameters: O(D) vs O(D?)
= Simplifies optimization

= Often sufficient for many applications

Example: Mean-field Gaussian

D
q(2) = [T Nz | s, 07)

=1
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Mean-Field Limitation: Ignoring Correlations

Issue: True posterior may have correlations

= Mean-field forces diagonal covariance
= Approximation is axis-aligned

= May poorly capture tilted/correlated structure

[Code S6]
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Mean-Field Failure Mode: Variance Underestimation
Recall: We minimize KL(¢||p)

Consequence:

= KL(g||p) heavily penalizes ¢ having mass where p is small
= Encourages ¢ to be narrower than p

= Results in overconfident, "peaked” approximations

Example: Correlated Gaussian

p<z>zN<o, [;8 OfD = 4(2) =N (a1 | 0.0])N (22 ] 0,3)

Mean-field ¢ cannot capture the correlation and underestimates variance
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Mean-Field Example: Code

True posterior: Correlated Gaussian

Sigma_true = np.array([[1.0, 0.8], [0.8, 1.0]])

Mean-field approximation: Diagonal covariance only

# MFVI restricts to diagonal
Sigma_mf = np.diag([sigmal**2, sigma2**2])

# Cannot represent off-diagonal correlation!

Despite this limitation, mean-field VI remains widely used due to its

simplicity and efficiency
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Scaling Challenge: Large Datasets

Problem: ELBO involves full dataset

N
L(q) = > Eyllogp(zn | 2)] — KL(q||p())

n=1

Computing gradient requires:

= lterating over all N data points

= Infeasible for large N (millions/billions of examples)

Idea: Can we use minibatches instead?

= Subsample data points
= Get unbiased gradient estimates

= Scale to massive datasets

Pablo G. Arce (ICMAT) PML 2. Variational Inference
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Stochastic Variational Inference (SVI)
Key insight: Use stochastic optimization

Unbiased gradient estimator:
1. Sample minibatch B C {1,..., N} with |B| = M

2. Compute gradient on minibatch:

N
Vils = 37> VuEg,[logp(zn | 2)] = VyKL(gy[lp)
neB

3. Update: ¥ <— 9 + pVy L5

Combines:

= Reparameterization trick (low variance)

= Stochastic gradient descent (scalability)
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SVI: Practical Algorithm

# Inittalize wvariational parameters
lambda = initialize()

for iteration in range(max_iters):
# Sample minibatch
batch = sample_minibatch(data, batch_size)

# Estimate gradient using reparameterization

grad = estimate_gradient(lambda, batch)

# SGD/Adam update
lambda = optimizer.step(lambda, grad)

Key advantage: Each iteration is O(M), not O(N)

[Code S7]
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Free-Form VI: A Different Philosophy

Recall fixed-form VI:

= Choose ¢y (z) family (e.g., Gaussian)
= Optimize 1 via gradients

Free-form VI asks:
What if we don’t choose the form of q upfront?

Approach:

= Assume factorization: ¢(z) = [T, ¢i(z)
= Use calculus of variations to derive optimal g
= Results in iterative coordinate updates

This leads to Coordinate Ascent Variational Inference (CAVI)
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Coordinate Ascent VI (CAVI): The Update Rule

Optimal factor ¢; has closed form:

log ¢ (zi) = Eq_,[log p(z, 2)] + C
where g-; = [1;4 ¢;(z))

Intuition:

= Hold all other factors fixed
= Update ¢; to its "best response”

= Take expectation over other latent variables

Alternate updates until convergence

Requirement: Model must be conjugate (exponential family)
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CAVI Intuition

Think of it as coordinate ascent on the ELBO:

q2 R S~
J/ L contours
\ :
\ /
\\ _/4_.
—— |

q1

= Each update: maximize ELBO w.r.t. one factor
= ELBO increases monotonically
= Guaranteed to reach local optimum
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CAVI Example: Gaussian Mixture Model

Latent variables:

= z,: cluster assignment for data point n
= Ly cluster means

= 7. mixing proportions

CAVI alternates updates:

1. Update responsibilities: ¢(zy,) x exp{E[log p(xy, 2, | u, 7)]}
2. Update cluster means: q(u) o< exp{E[log p(x, z, px)]}
3. Update mixing weights: ¢(m) o< exp{E[log p(x, z, )|}

Conjugacy = All updates are closed-form!
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CAVI: General Algorithm

# Inittalize all factors
q = initialize_factors()

while not converged:
for i in latent_variables:
# Update factor 7 given all others
q[i] = compute_optimal_factor(
q_except_i=q[:i] + ql[i+1:],
joint_log_prob=log_p

# Check ELBO convergence
if elbo_change < tolerance:
break

Pablo G. Arce (ICMAT) PML 2. Variational Inference
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CAVI: Convergence Behavior

Guarantees:

= ELBO increases monotonically: £t > £()
= Converges to a local maximum

= Deterministic updates (reproducible)

Practical considerations:

= Initialization matters (multiple random starts)
= May converge to poor local optima

= Slower than gradient-based VI for high-dimensional problems

Limitation: Requires full dataset pass per update
(Can we make CAVI scalable too? Yes! Stochastic variants exist)
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Method Comparison

Method Family Choice Scalability Needs Conjugacy

Fixed-Form  Parametric gy With SVI No
CAVI Derived from L No* Yes
SVI Parametric gy, Yes No

*Stochastic CAVI variants exist
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Method Comparison

Practical guidance:

= Large scale + flexible model: SVI with reparameterization
= Conjugate exponential family: CAVI

= Complex posterior structure: Normalizing flows, neural VI

The landscape:

= Fixed-form VI: flexible, scalable, works anywhere
= CAVI: elegant closed-form when conjugate

= SVI: best of both worlds for large-scale problems
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Limitations of MFVI

= Underestimates posterior variance.
= Cannot capture correlations.

= KL(g|p) is mode-seeking.
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Structured Variational Families

= Add correlations.
= Tree-structured VI.

= Matrix-variate Gaussians.

2.5
[ analytic
2.0 770 mean field
Q 7 1”771 low_rank
® Y/ —.
1.5 L7 full rank
W
1.0
T T
0 1
zZ1
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Normalizing Flows

= Transform simple q(z) to complex distribution.

= |nvertible mapping with tractable Jacobian.
(a)“ (®) . (c),_ (d))‘
(e) ) (9) r)
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Extra: Score-Matching VI

Key idea: Instead of matching densities (ELBO), match score
functions:
V:logqx(z) = V. logp(z|z).

Score-Matching VI (GSM-VI):

= |teratively adjusts ¢y to match posterior scores at sampled
points.

= Closed-form updates when ¢y is Gaussian.
Pros:

= Black-box (only needs differentiable joint).
= Often 10-100x fewer gradients than ELBO methods.
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Key Takeaways

Core concepts:

. VI converts inference into optimization via ELBO

. Two paradigms: fixed-form vs free-form

1
2
3. Reparameterization enables low-variance gradients
4. Mean-field simplifies but loses correlations

5

. Stochasticity enables scalability
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Questions?




Next Session

Monte Carlo & Hamiltonian Methods (Ch. 12)
Dec 3, 2025

Miguel Santos
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