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Motivation

Aihub-CSIC connection interdisciplinary discussions
Consulting for other CSIC intitutes

Momentum+ALLIES programs @CSIC

CSIC statistical/ML courses ‘kind of oldies’

Internal needs within ICMAT and some of our sponsors

Community building
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» Of Artificial and Natural Intelligence
» Basic PML concepts through an example

» Probabilistic Graphical Models

» Intro to ML with neural nets. Optimization with stochastic

gradient descent

» |ntro to PML with neural nets. MCMC and variational inference

= [he road ahead

A brief distillation of KM 1-7 Datalab C5IC



Of Artificial and Natural Intelligence
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EU AI Act (Sep’23 version)

‘artificial intelligence system’
(Al system) means software that
Is developed with one or more of
the techniques and approaches
listed in Annex | and can, for a
given set of human-defined

Transf objectives, generate outputs

Orrr:e such as content, predictions,
recommendations, or decisions
Influencing the environments they

Iinteract with:

Annexl: ML..., logic..., statistics
(bayes)...

In final version: ML, logic+KB



The LLM rush
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A survey of large language models https://arxiv.org/abs/2303.18223
Eight things to know about LLMs https://arxiv.org/abs/2304.00612

Attention is all you need (2017)
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053clc4a845aa-Abstract.html



https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2304.00612
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

ML

A computer program learns from experience E with respect to task T
and performance measure P,

If its behaviour with respect to T, measured according to P, improves
with experience E

Representation-Evaluation-Optimization

Goodfellow et al DL book



Some ML examples. Red matters!!|

Uncertainty is almost ubiquitous in ML:

* Given the monitoring trace of an Inet device, are we facing an
attack? Should | stop operations?

* A person with these FB likes will buy this type of beer? Should |
send her my brand add?

* |f robot performs this, How will the user react? And the
environment? Consequently, what should the robot do?

DatalLab ICMAT



In many applications, we’ll need to go beyond

* Beyond a model with good fit...
* Beyond a model that predicts well...
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In many applications, we’ll need to go beyond

* Beyond a model with good fit...
* Beyond a model that predicts well...

* Fraud detection. Classification problem
* Few false positives. FPR
* Few false negatives. FNR
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In applications, we’ll need to go beyond

* Beyond a model with good fit...
* Beyond a model that predicts well...

* Fraud detection. Classification problem
* Few false positives. FPR
* Few false negatives. FNR
* But what really matters are minimising monetary losses!!!
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In applications, we’ll need to go beyond

Beyond a model with good fit...
Beyond a model that predicts well...

Fraud detection. Classification problem
Few false positives. FPR
Few false negatives. FNR
But what really matters are minimising monetary losses!!!

* Reservoir system management. Forecasting model for inputs and demands
Feeds decision model e.g to minimize energy deficit, wasted water, given constraints.....

 Aviation safety risk management. Forecasting models for accidents and incidents, as well
as their multiple impacts

Feed a risk managment model: optimal safety resource allocation gven constraints...
* Robot control. Forecasting model for user and environments
Feeds robot control model: optimal robot decisions over time, given constraints...

DatalLab ICMAT



PML. NI meets Al

* Bayesian inference provides a unified and coherent approach to problems
of interest in Statistics, inference, prediction and decision support. Thus, to
(most) ML problems

Yet mainstream ML focuses on MLE or MLE+regularization, check IntroML at
https://datalab-icmat.github.io/courses stats.html

* But things are changing slowly...

. PI\I/IL Igads to complex computational problems, some of which yet to be
solved.

e An introduction to what is known (and what is yet to be discovered)
e But also intro to key Bayesian concepts

* In relation to key models in ML applications: supervised, unsupervised,
reinforced, semisupervised,...



https://datalab-icmat.github.io/courses_stats.html

Some objectives of PML-RG

. Introduce key concepts in PML as well as key models motivated
by real problems

. Introduce key computational methods

. Showcase methods in realistic problems

. A Bayesian view on popular ML models (supervised,

unsupervised, reinforced, semisupervised)
. Community building



Basic PML concepts through an
example

Datalab CSIC

15



Basic concepts!!!

* Inference/Learning: Beyond Point Estimation, Interval estimation, Hypothesis testing
* Prediction

* Decision Support

* Uncertainty almost ubiquitous
* Inherent to system
* Incomplete observability
* Incomplete modelling

* Probability as measure of degree of uncertainty with certain mathematical properties

* Interpretations
* Classical
* Frequentist
*  Subjective

https://www.youtube.com/watch?v=KxV5kckOVeA

https://www.youtube.com/watch?v=L1Q7w3ch3

https://www.youtube.com/watch?v=0WjWYyG40ys
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https://www.youtube.com/watch?v=KxV5kckOVeA
https://www.youtube.com/watch?v=L1Q7w3ch3
https://www.youtube.com/watch?v=OWjWYyG4Oys

Basic concepts!!!|
* Conditional probability

Ply=y,x=x)
P(x =)

Ply=y|x=z)=

 Independence  **V

VEXyEYy, px=z,y=y) =px=z)ply = y)

* Conditional independence  xly |z

VeeEx,yeEy,z€z px=z,y=ylz=z2)=px=z|z=z)ply=y|z=2)
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Ultrabasic concepts!!!|

. . L
Marginal distribution Vrex Plx=x) =Y Plx=ay=1)
y

P(x,y)

p(x) = / plx,y)dy

*B | VP(y | x
ayes rule Plx |y) = P{}L‘)PP{‘S | x)

P(y) = ¥, Ply | 2)P(x)

Datalab CSIC



Beta-binomial model: A typical example

Consider recovery protocols for an SME computer service after a cyber attack. We
introduce one protocol and wish to assess it, e.g. to be compared with another one.

Protocol tested in 12 attacks. Effective in 9 (e.g. attack duration was less than one hour)

Let’s start with the model



A typical example

n trials (identical, independent). Two results: success, failure

Number X of successes in n trials

Success probability in a trial

Distribution of number of successes in n trials N6 ~

For X=9,
Pri A

(4

o126

e ) o (1 — )7, o =

.



A typical example

Likelihood PriX =0|th) < 61 —6,)". 6, [0.1]

First approach: Maximise likelihood --- Maximum
likelihood estimator MLE

The MLE is 9/12

But MLE has several defects...



A typical example

We may use another source of information about the parameter. The prior distribution, e.g.

ple,) = 1.6, = [0.1].
Update it through Bayes formula, to get the posterior

pliy e = 9) oc p(d) = Pr(XN = 96 ~ |'3'!|'['l — :]::. i

(T

0, 1]

which summarises all the info available about the parameter in a distribution

Ra

Beta (10,4

NNE UL
PRTE® ||
mmninmo
[GENEWEEREE

Check
http://en.wikipedia.org/wiki/Beta distribution 1f
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http://en.wikipedia.org/wiki/Beta_distribution

A typical example

The posterior serves as prior for subsequent studies. E.g., if in the following 5 applications
there are 3 successes the new posterior is

pliy |z =3) o [ (1 — 607 = [B7(1 —6,)7 ] =617(1 —6,)". ¢, = [0.1] Beta (13.6)

Suppose that a priori, the probability is around 80% and bigger values are more likely, the
learning goes through

Beta (4.1 Beta(l3.4) Betal16G.6G).

Sequential nature of Bayes rule



A typical example

-t
-y
- = =
- -
i = -
wm = [ -
e |
o I
=1 T = T T T
-] (=T [=F-] 10
=
-+
-
_— — ™
= =
L L] =¥
= =
& &
¥ I /\ ‘ ¥ I /\ ‘
[ m -
=1 i o —
-] =53 (=11 os o= 1.0 0.0 o2 0.4 oS (=T 10
= =
- —
-
& g -
= wr
oL . =
W w ™
 _ 3
i m -—
(=] — L= —
i e] oz o os os 1.0 0.4 oS o= 10
= =

Convergence in learning, consensus, asymptotic behavior
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A typical example

* Focus on Beta (10,4). Try to use simulation for all computations also!!!

Point estimate. Summarise in a value, e.g. the posterior mean

111 . —y
Al = 0.72

Why not the posterior median? Or the posterior mode (MAP)!!!
Interval estimate. Summarise interval with high probability e.g. 0.9.
 Symmetric probability wise

0,505, 887

* Highest posterior density interval. HDI



A typical example

* Focus on Beta (10,4)

Hypothesis testing. E.g Is the protocol effective? Null: Is the proportion bigger than 0.5
1-pbeta(0.5,10,4)=0.953

Predictions Probability of more than 4 successes in 7 trials

Pr(X = kle =9) = / PriX = k|6 p(t |z = 9)dt, =

— / ( ;. jlr-"?[l — |r-|'|:]T . ( l:;} jlr,ull'[-l . Ir-l'|:]::r1"|r.|'| _
( T ) ( 13 )
" ke A ., 3 A
- ( 20) '
1 5-3_ .'rl' y

Pr(X = 5lx =9)=73"7

—= Pri X = J".'|.." — O) = 0.6641 .
Datalab CSIC



A typical example

Consider a second protocol. 10 opportunities, successful in 6. 02

Model
N ||r-"| ~ i 1 2, |r-‘|| |
V|6 ~ i 10, f.)
Ir-'|| . Ir-'lj ~ {1 .II_;ILr] 1|
independent
Want

= Prif, = s = 9.y = 6)

Datalab CSIC



A typical example
Ay o~ Befalll), L), 0y ~ BelfalT.0)

* Distribution of f#{ — /., 2277

* Through simulation. E.g 1000 observations, compute differences, count those bigger
than O, divide by 1000.

* Which protocol is better?

— =y

Fa === I TR



A typical example

 Utility structure

succeeds does not succeed
Plan A (), = [
Plan B 1 (.2

» Expected utilities given probabilities
0.8, =0(1 — &) = 0.8, (o +=0.2(1 — o) = 0.2 + (1.8,

* Epected utilities

OSE(# |r = 9) = 0.8 = 10 —

Datalab CSIC
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Recap: Bayesian inference with the beta-binomial model

Parameter b

n " WK —,C‘ A‘ ----,”
Model Pf(X:K\@: (k) 0 (4,9) /K !
Data X

X e b
{(B]x) < ¢* (1-9)

1-6
h(8) = @5 0(6lx) = x (ﬂj 6 +(n-x) /L\Dé( )

(MLE) kl(_é)? 0 = _’é__ ;;.«1(9- -6 = E":yn

Likelihood

Datalab CSIC



Recap: Bayesian inference with the beta-binomial model

. . " w=X
Likelihood (Bl 0 (-0)
= ! G~ 3 (X ?))
Prior neye 8 0 R
: : : ' = 7 (#)
Noninformative prior nl@) = It
Eliciting the prior Bl oy B
Posterior
. . , S
Sequential update el (6= 20 PN 2 ey pioby ¢ () 6% (-0
Prior P 61"*" (1-9) i

)
folap) — fe (AFX, b (w=n),)



Recap: Bayesian inference with the beta-binomial model
(in parallel think of simulation based solutions)

Point estimation - a+X
_ £(5) = ALpH
Posterior mean .
. . n X a(‘u% R, S
Mix of prior and data W T arptn M
What if n grows?? 5 X % Var (01x)
o +X=7
Posterior median med (O1x) & 2
O(HLJ‘H\ -5;'
o X

Posterior mode ede (B) = prye=)

Datalab CSIC



Recap: Bayesian inference with the beta-binomial model

S T
Credible interval n{blx)

-
s I|‘r {._%fhf‘i't{ll%h-—h:l
L

N :
il *\é
° \

Symmetric interval

HPD

Datalab CSIC



Recap: Bayesian inference with the beta-binomial model

n[?:-l'm:l
Hypothesis testing
e ®
. ~ b e B, Hy B E T,
Testing three hypothesis 4 £ @ ™ |
S ey nle@ BB
| - 55 1l
l‘L @ RO H’[E-'F_a @ I.-?"~'l|' C 4
(Ao L
' I
Point nulls 22 et =B s H,' 8+ B
Cyehible inferral R |o b
1 R.
.E’:c:‘uapt H, L,I &

Ev: dente su.ppn_’fs ‘1‘1,3
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Recap: Bayesian inference with the beta-binomial model

m Rt&ve. tu al,s
R(¥=k|x) = J.qu 8) n(flx) db «O-m

a4 o erH

S‘,f 'S (H;)“l'b(-,') g (k.

Forecasting. The predictive distribution

-

(‘\”\\ md{\ 'H'(* ")/

- —

fs(mm (om- WH’”“ )

Summarising the predictive distribution g(Y[x) . Z y e (YK x)

- J ﬂrfj‘[ ) |‘€' i ll‘1_--i('|.(:')\] db
o+ X

: ;,MB 0 (¥Ix) db= 'm;';m
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Recap. Exchangeability

Of data, models and parameters.....

Observations from random phenomena: independent given a certain
parameter (conditionally independent)—>exchangeability

http://en.wikipedia.org/wiki/Exchangeable random variables

Finite set of rvs exchangeable: any two permutations have the same
distribution

Infinite set of rvs exchangeable: any finite subset is exchangeable

De Finetti’s theorem: set of rvs exchangeable iff ciid given a certain
parametrisation

Datalab. CSIC


http://en.wikipedia.org/wiki/Exchangeable_random_variables

Recap: Classical vs Bayesian

Once model fixed, we want to learn about it (its parameters)

Classical Bayesian

Parameters fixed Parameters uncertain, prior
Given data, formulate likelihood Given data, formulate likelihood
Maximize likelihood to find MLE Aggregate likelihood and prior to get

(mimimum least squares, cross entropy,...) posterior

Datalab. CSIC



Recap: ML inference
Likelihood

MLE

Datalab. CSIC
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Recap: Bayesian inference
Prior
Noninformative prior
Conjugate prior

Eliciting the prior



Recap: Bayesian inference

Posterior distribution. Bayes formula

Datalab. CSIC



Recap: BayeSian inference. Rrecallin parallel simulations for this

Point estimation E (Bhy=
Posterior mean

Posterior median

Posterior mode. MAP



Recap: Bayesian inference
Credible interval

Symmetric interval

HPD



Recap: Bayesian inference

Hypothesis testing =



Recap: Bayesian inference

Forecasting



Recap: Bayesian decision analysis

Decision analysis



Bayes in core themes in ML. PML

e Supervised learning: Pairs input-output available
Regression, Classification

e Unsupervised learning: Outputs not available (or the inputs are the
outputs)

Density estimation, clustering, outlier detection, Visualisation
* Reinforcement learning: Decisions impacting outputs on-the-fly
Markov decision processes
* Semisupervised,...



Recap. Computational problems in BML

Plagued by complex integrals with complex integrands
+ optimisations

Easy conceptually... tough computationally



Probabilistic Graphical Models

Datalab CSIC
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Motivation

e Simple way to visualize structure of probabilistic models
* Designing and motivating new models
* Understanding properties like conditional independence

* Complex computations viewed through simple graphical
manipulations

* Explainable and interpretable. Easy to communicate
* Classification, generation
* Deep belief nets in deep learning....



Concept
p(x) = Hﬁ'[l'i-s | Pag(x;)) p(x) = [geg o(C)

oro
®o 8%

pla.b,c,d,e) = p(a)p(b | a)p(c | a,b)p(d | b)p(e | ¢) pla,. b,c,d, e, ) L—é—tgmn(d b)pb.e(b, ¢ )pad(a,d)db.e(b, e)de.s(e, )

Bayesian networks. Directed, Acyclic Markov fields. Undirected

Datalab CSIC 50



Probabilistic diagrams with two nodes

Model for P(A,B)

@ @ P(A)P(B)
(a y——=(=) P(A) P(BIA)
(A )=—) P(B) P(A|B)

First case, A and B are independent. We move from second to third, and
viceversa, via Bayes formula

DataLab CSIC
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Probabilistic diagrams with three nodes

Model P(A,B,C)

P(A)P(B)P(C)

t@
& ©
ST

P(A) P(BIA) P(C)

)

S ¢

P(A)P(B|A)P(CJ|A,B)

® G
@ G

P(A)P(BI|A)P(C|B)
First case, independence. Fourth case, A and C are conditionally independent given B.

Read http://en.wikipedia.org/wiki/Conditional independence

DataLab CSIC
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The hidden info

T,
i ._j y
|: [ TR J
. Py
.-'". - H'\_ﬁ
— s &
- ﬂ,_{' :I__.-F -,
Fa i LY
( £ ) C
ki 1 z |
S - 4 l_.}'\-\. . "l-l::\.
.-"'. H"'h.
& %
D ¢k
|I T .ll ||'. I:l k:\:lh :I
'H-.& o ~ T, .

P(A.B.C.D.E) = P(A)P(B|A)P(C|A)P(D|B,C)P(E|C)

Datalab CSIC
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The hidden info

[ &
chin
H': 02 (L a
P 3 e 08 |02
| H. e
I‘*.M_ L A a a b.e|be b,T c | ©
¢ \ c | 021005 08| 08 0.05 08 | 06
g -
f ,!r} / g'l
P(A.B.C.D.E)= P(A)P(B|A)P(C|A)P(D|B,C)P(E|C)
Datalab CSIC 54



ONG SCREEN
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@ bibsearch

Non-modifiable (Now with ChatGPT et al)
Modifiable
Medical conditions Then reviewed by experts

CRC



P(Usexy - - -
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Age vs BMI risk map for men
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Cost intervention
Cost complications
Comfort
Information

MC Value function
Risk averse utility function

Corrales et al (2024,2025)
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ML models as PGMs. Inference and Prediction

Theta

Datalab. CSIC
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ML models as PGMs. Decision Analysis
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ML models as PGMs. Hierarchical models

G Co g

Ga
@
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Intro to ML with neural nets.
Optimization with stochastic
gradient descent

Datalab CSIC
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Brief history of NNs

L S S S

End of 50’s, Beg of 60’s

End of 80’s, Beg of 90’s

2010’s on

Rosenblatt’s perceptron

Efficiente scheme
Good branding

Cybenko’s representation  Good branding

Shallow NNs

Deep learning, variants
Outstanding aplications

Impulse from CS comm

Massive labeled data

Rediscovery of SGD

GPUs

RelLUs et al

Domain specific

architectures

Winning Imagenet comp

Transformer, LLMs
DatalLAb CSIC

Minsky& Papert (1968)

Tech problems (vanishing
gradient)

Emergence of SVM and
others
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Formulation

QQQR000000
5660
Q0O

Input Layer e R Hidden Layer € B Output Layer e R?

Linear in beta’s, nonlinear in gamma’s

y = E.ﬂj".&[f’]’j} TE

71=1
€ r N{ﬂ1 'S'-E]:-

w(n) = exp(n)/(1+ exp(n))

DatalAb CSIC
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The evolution in activation functions

Sigmoid Hyperbolic Tangent
1 1
Traditional _/_
Non-Linear 0 0
Activation
Functions 1 -1
y=1/(1+e*) y=(e*-e*) /(e +e*)
Rectified Linear Unit .
(ReLU) Leaky RelU Exponential LU
Modern P 4
Non-Linear g
Activation
Functions 4 p

-1 0 1 -1 0 1

y=max(@,x) y=max(ax,x) {u{e -1), K{E
a = small const. (e.g. 0.1)

DatalAb CSIC
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Training

Given training data, maximise log-likelihood

a
Il i =

T |
min f(3,7) =Y _ fi(B.7) = (.u! — Y " Biv(ziy ;.J
i=1 | F=1

=

Gradient descent

Backpropagation to estimate gradient

DatalAb CSIC



Training with regularisation

Weight decay

2
T b T

min f(3,7) = Z filB.7) = Z (ye — Z.ﬁ; t’f'{I:“.r_?J)

=yl i—1 _T=|.

i=1

min g(3,v) = f(8,7)+ h(3,7).

Illlf{fl1 rll—}n.]Zﬁ —AQZZ r_;.,!

DatalAb CSIC

Ridge

66



Optimization: Using gradient info

Gradient descent

2.0 T | T T
\ /
L5 Global minimum at x=0. s
\ Since f(x)=0, gradient /
Lok ~ descent halts here. Vs i
~ s
> s
0.5+ ;
- -~

0ol "~ -~ f(xz)=0 Stationary point

T e - - -
For z <0, we have ft\a:'] <0, For & =0, we have ft\a:’] =1
so we can decrease f by s0 we can decrease f by

(.5F  moving rightward. moving leftward. . -

1.0F —
- flz) =1 z

1.5f o 1
— flz)=a

2.0 | | | | | |

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
. . H oo
fle+¢€)= f(x)+ef'(x)

flx—esign(f'(x)) <  f(z)

Until stopping condition
x' =x — Ve f(x) Gradient descent Grad estimation. Backprop for NNs
* Fixed and small rate

Learning rate e Line search

DatalLab ICMAT



Gradient descent
(B, 7)esr = (Byv)e —aVal(8. 7))

Va((B.7) = VfulB.7) + Vh(B,7)

1=1

(Vafi)e = -2 (y-a — Zﬁﬂi'{:r:hﬂ) (T ve)

71=1
(Vo filka = -2 (yi =3 ﬁ;*-t.i'{-rhﬂ) Brr(zy ) (1 — () )z
71=1

(Vah)e = 2A1 Bk (Vyh)er = 2A27k,1.



Backpropagation (CASI 18, care with notation)

Alporithm 18.1 BACKPROPAGATION

bl

Given a ir x, y, perform a “feedforward pass.” computing the activa-
lmnm at each of the layers Ly, L, ..., L g;ie. compute fix; W) at
X usmi:-_ the current W, saving each of the intermediary quantities along
the way.

For each output unit £ in layer Ly, compute

.é-”‘] aL[y, flx. W)

?'l:-h:l
= ﬂﬂr_m 5z 5N, (18.10)

where ¢ denotes the derivative of g(z) wrtz burbxmﬂplﬂurLU fi=
Ly — fI3. (18.10) becomes —(y; — f¢) - g”ﬂ[ )
I‘-DT[E._'_u':.-T'-..l![ =K-1,K-2,..., 2, and for each node £ in layer k. set

Pk
s ) 2l +1) ik )
= Y widE T ER e, (18.11)
i=1
The partial derivatives are given by
dLLy. Fle: W _ m (+1)
Y] E

alll.'i.l;

(18.12)
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Input Laver = B Hidden Laver e B Outpul Layer B2

y= Zﬁjw{m"rj] TE

=1
e ~ N(0,0?),

¥(n) = exp(n)/(1 + exp(n))

(Shallow) Neural nets

‘?“kt I

)

X

0

S

L)

3

0 L4h U
X

14

{fﬂ'? P fL—‘l}

zie1 = filz,m).

mp,
Yy = ZﬁjELJ + €
1=1
L N{naﬂ-?L
Deep neural nets

DatalAb CSIC

70



Problems

Evaluating the objective function. Depends on n

SN f(B.7)

=1

Evaluating the gradient. Depends on n

Y V5i(B.7)
—

Each gradient sub-term V/:(5.7) over a large number of parameters and over
a long backwards recurrence

Complexity was O(w) and w is getting pretty big in Deep networks



From gradient descent...

ing

INIMIS

ing goes through m

Train

hidden layer 2 hidden layer 3

hidden layer 1

input layer

output layer

\ v “ o '8 o.... ,.lhl’.',
\u\\ % N /,/

AvoAonouowovov

I! f//l IM’///- /s -\2 '_roflc -\\ﬁ_‘w.\ -\\ \\ \\\\ gl \\

"l Oﬂlf n..‘( ."" \_\‘b .\\‘\\\\\

"\
.

t.

a ‘
. ‘.-.
\s _. .. '
AAS ' c.l
\‘\\\\\\“\\\M“‘\H . _o.v’.c MI;:,":' !
\ AN A..

M»&V/M.Am
i

£y
= = !
g = 2
~ 8 >
Al S K
~ | & = = =
cC 5 3)
| Wo O >
MR - B A I
2 (4% —| &
8 | oy
= B . =
i - O S
N o r J
- - © == L)
% 8 05 >
E . — q
[ ~ 9
S o

Might not even fit in memory, very slow anyway
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... to stochastic gradient descent

(Randomly) sample a minibatch of size m’.

Approximate gradient

1 m’ | | |
:_v L ZI’:[”. “]‘9
9= BZ (", ¥, 0)

1=1

Update via gradient descent

0 «— 0 —cg



Stochastic gradient descent

Require: Learning rate ;.
Require: Initial parameter 6
while stopping criterion not met do
Sample a minibatch of m examples from the training set {m“), S .a:("')} with
corresponding targets y(i).
Compute gradient estimate: g + +,—§1V9 Y L(f (a:(") 0). y“)) Sffh?f;ka"gf P
Apply update: 8 + 0 —¢€g
end while
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SGD. Robbins Monro conditions (1954!111)

0 X0

If the learning parameters are chosen so that ) «.= Y <o
k=1 k=1
and the gradient estimator is unbiased

then SDG converges a.s. (to a local optimum)

NB: The batch now fits in memory!!!
NB2: Many SGD variants
NB3: Autodiff



Intro to PML with neural nets.
MCMC and variational inference

Datalab CSIC
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What is to be gained?

* Uncertainties in predictions

* Improved decision making based on above (risk aversion etc...)
* Some explainability via hypothesis testing

* Architecture choice

* Incorporating prior info (at least structurally)



Bayesian analysis of shallow neural nets (fixed arch)

m

¥ = Z-‘ﬁﬂ"[f’"ﬁ} TE
7=1
£ ~ N(0,0?),

(n) = exp(n)/(1 + exp(n))

DatalAb CSIC
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Bayesian analysis of shallow neural nets (fixed arch)

¥ = Z.ﬂﬂﬂf’h} TE

7=1
£ ~ N(0,0?),

W(n) = exp(n)/(1 + exp(n))

Bi ~ N(us,o5) and v ~ N (v, S5)

ps ~ N{ag, As), piy ~ N{ay, Ay), 057 ~ Gammal(es/2, esCh/2)
S Wish(ey, (e4Cy) ™Y and 072 ~ Gammal(s/2, 85/2)
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Objects of interest

‘Indirectly’, the posterior

p(B, v, v)p(D|B, v, v)
[ p(B.y.v)p(D|B, y, v)dBdydv

p(B, yv.v|D) =
Directly, the predictive

pyn+1 1D, xne1) = f,ﬂijwq 8. ¥. v. Xng1)p(B. v, v|D)dBdy dv
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Bayesian analysis of shallow neural nets (fixed arch)

1 Start with arbitrary (j3,7,.v).
2 while not convergence do

3 Given current (7v,v), draw 8 from p(S|y.v.,y) (a multivariate normal).

4 for j = 1,....m, marginalizing in 3 and given v do

5 Generate a candidate §, ~ g;(74).

6 Compute a(7;,%;) = min (1%) with F = (71,72, Fas ooy Tm) -

T With probability ﬂ.h'}._ﬁ':,:l replace 7y; by ¥;. If nmot, preserve -;.

8 end

9 Given 5 and <y, replace v based on their posterior conditionals:

10 plus|B,08) is normal; p(p+|y,5y), multivariate normal; p(o;-|8.uz),
Gamma; p(S;'|v,p+), Wishart; p(o*|3,7,y), Gamma.

11 end

DatalAb CSIC
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Uncertainty in predictions, explainability

\ . 1 X -
f(x) = E(yn411Xp41. D) = — ZEU’;\’H | Xn+1.60 = 6p) .
k = g
= _wamﬂ]ihm:”h]]ﬂn_u__ﬂ:ﬂl,

T T T T T T 1
-300 -100 0 100 200 300

300
H
. S
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F-HAT
100 200
1 1
. L]
Eﬁ\\
* 'Ir-:__i
FHAT
100 200
]
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Bayesian analysis of shallow neural nets (var arch)

Pr{d; = k|d;—1 = 1)

e

T, + Z dyB0(x'y;) + €
7=1

£~ N(0,0%),

v(n) = exp(n)/(1 + exp(n)),

(1—a)' % xa® ke {0,1)

Bi ~ N (s, 03), a ~ N(a,02), 71 ~ N(uy, Zq).

Reversible jump algo, Bayesian model averaging

DatalAb CSIC
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From shallow to deep....

1 Start with arbitrary (3,7,v).
2 while not convergence do

3 Given current (7,v), draw 5 from p(8|y,v,y) (a multivariate normal).
4 for j=1,....m, marginalizing in 5 and given v do

B Generate a candidate ; ~ g;(7;).

@ Compute a(7y;,%;) = min (1_, Ejjl-is) With F = (71,72, -« s Fig ooy Trm )

With probability a(y,;,¥;) replace ; by §;. If not, preserve 7;.

8 end

9 Given 5 and 7, replace v based on their posterior conditicnals:
10 plps|B,08) is normal; plj-|y,Sy), multivariate normal; plo;-|3.ps),

Gamma; p(Sy'|y.p+), Wishart; p(o—2|8,7,y), Gamma.

11 end

1 Start with arbitrary f = (8o.70).
2 while not convergence do

3 Given curremt &; and g: ~ A(0,]), perform one or more leapfrog
integration steps

£ y
q! 1 _]!. = — i'\'_"{' l:ﬂ!j

[ ='5-"|:+Cli‘:.115
E

ETI;':E]; +1 ]

'1]':11=€'L|J.2._

to reach &* and g°.

4 Compute off,#") = min { L, %ﬁ%:—:]}-} .

5 Accept 8 as #;41 with probability o(f:,f"), else discard it.
6 end
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Information theoretic concepts. KL. VB

Start with probabilistic model of observed variables x and latent variables z (labels and pars)
Want to estimate p(z|x) but difficult because of p(x)
Approximate with a distribution of efficient computation ¢(z)

Minimise distance so that they resemble

Use Kullback-Leibler divergence KL(q|lp) = /q(z)l()g ?(Z))dz
p(z|x

Disimilarity measure
Non negative
0 iff they coincid

p(z,x)



The road ahead
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Next sessions

Nov 19. Variational inference. KM-10
Dec 3. MC&Hamitonian Methods. KM-12
Dec 17. Sequential MC. KM-13

Jan 14. Bayesian Neural networks KM-17



Challenges

The limits of VI

New hybrids

New bright ideas from physics?
PPLs

Decision support

The meaning of priors
Bayesian Transformers
Bayesian graduation in LLMs
Architecture selection
Security. BAML
Intepretability



ML and Stats

J. Friedman. Data Mining and Statistics, What’s the connection (1998)
L. Breiman. Statistical Modeling,. The two cultures (2001)

Cross Validated. What's the difference between data mining, statistics, machine learning
and Al (2010)

S.D. Sekar What's the difference between Artificial Intelligence, Machine Learning,
Statistics and Big Data (2014)

Cross Validated. What exactly is Big Data? (2015)

David Donoho. 50 years of data science (2015)

B. Efron, T. Hastie. Computer Age Statistical Inference (2016)

D. Dunson Statistics in the Big Data era: Failures of the Machine (2019)
D. Spiegelhalter The Art of Statistics (2020)

M. Hernan, J. Hsu, B. Healy A second chance to get causal inference right: a classification
of data science tasks (2019)



ML

e Efron, Hastie (2017) Computer Age Statistical Inference. Camb. UP
* Goodfellow, Bengio, Courville (2017) Deep Learning, MIT Press.

e Hastie, Tibshirani, Friedman (2009) Elements of Statistical Learning.
Springer

* James, Hastie, Witten, Tibshirani (2013) An intro to Statistical Learning.
Springer.

e James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An intro
to Statistical Learning: with Applications in Python. Springer

https://datalab- _ _ .
icmat.github.io/courses stats.html#Introduction to Machine Learning

https://lims-cunef-icmat-rg2024.github.io/
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https://datalab-icmat.github.io/courses_stats.html#Introduction_to_Machine_Learning
https://llms-cunef-icmat-rg2024.github.io/

Bayes

* French, DRI (2000) Statistical Decision Theory, Wiley

* Hoff, P. (2009 ) A first course in Bayesian Statistical Methods, Springer

e Berger, J. (2013) Statistical decision theory and Bayesian analysis, Springer
* Robert, C. (2007) The Bayesian choice, Springer

e Gelman, A., Carlin, J..... (2013) Bayesian Data Analysis, CRC

* DRI,Ruggeri, Wiper (2012) BASP, Wiley

https://datalab-icmat.github.io/courses stats.html#Bayesian Data Science
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https://datalab-icmat.github.io/courses_stats.html#Bayesian_Data_Science

PML/Bayes and ML

e Barber (2020) Bayesian reasoning and machine learning.

* Bishop (2006) Pattern Recognition and Machine Learning. Springer
 Murphy (2014, 2022, 2023) PML

* Naveiro, DRI (2026) BAML



Thanks

* Next meeting Nov 19th



